
‘State of the Union’: Evaluating Open Source
Zero Trust Components

Tobias Hilbig1[0000−0002−2904−4758], Thomas Schreck1[0000−0002−8960−6986], and
Tobias Limmer2[0000−0001−8904−0620]

1 HM Munich University of Applied Sciences, Munich, Germany
{tobias.hilbig, thomas.schreck}@hm.edu

2 Siemens AG, Munich, Germany
tobias.limmer@siemens.com

Abstract. Zero Trust Architecture (ZTA) is a security model based on
the principle “never trust, always verify”. In such a system, trust must
be established for both the user and the device for access to be granted.
While industry adoption of commercial ZTA solutions is accelerating,
the state of open-source implementations has yet to be explored. To
that end, we survey open-source implementations of zero trust compo-
nents and put forward a set of ZTA specific requirements to evaluate
against. We also identify seven major challenges that hinder the adop-
tion and deployment of open-source zero trust solutions. Our results
show that implementations for individual components are much more
mature compared to “all-in-one” ZTA solutions. The interoperability be-
tween solutions and the development of inter-component protocols are
the main areas in which improvements can be made. Despite encourag-
ing developments, we conclude that building ZTAs on top of open-source
components is difficult.

Keywords: zero trust architecture · distributed systems security · au-
thentication · authorization

1 Introduction

Network security has always been adapted and improved, both operationally and
conceptually, to cope with new requirements and challenges of an ever-changing
IT landscape. Despite this, the volume and impact of attacks against IT sys-
tems are increasing yearly. Existing perimeter-based network security cannot
cope with today’s requirements: Due to work-from-home, cloud computing, and
BYOD policies, an organization’s perimeter can no longer be clearly defined
and protected. Furthermore, as the software and hardware landscape is becom-
ing more diverse, enforcing strict access control policies in such heterogeneous
environments can be challenging.

Zero Trust Architecture (ZTA) is one of the more recent concepts in network
security. It can be summarized as “never trust, always verify” [1]. In contrast to
the existing perimeter-based network security model, no inherent trust or priv-
ileges are granted based on the user’s or device’s physical or logical location.

2 Hilbig and Schreck et al.

Instead, a trust algorithm mediates access based on user, device, and service
authentication and authorization. ZTA is a promising, significant change in net-
work security philosophy compared with existing approaches and ideas.

While ZTA was conceived almost 20 years ago [2], it took considerable time
for the first large-scale implementations. After a significant data breach known
as “Operation Aurora” in 2009, Google implemented ZTA and subsequently pub-
lished an article series [3] called “BeyondCorp” in 2014. Netflix [4] and Microsoft
[5] also adopted ZTA in the last few years. Market research [6] shows that large
parts of the industry are planning to transition their networks to ZTA in the
near to medium-term future. To that end, “ZTA-as-a-service” offers by large en-
terprises seem to be the primary driving factor. It appears that the availability
and maturity of open-source software and protocols necessary for implementing
ZTA is an under-researched field.

Therefore, we want to answer the following research questions: (1) What are
specific requirements for ZTA components? (2) To what extent do existing and
emerging ZTA software solutions and protocols meet these requirements?

Our contributions are: (1) an overview of currently available and emerging
ZTA software and protocols, (2) an evaluation of their features and maturity
and (3) an analysis of specific requirements for ZTA components. In addition,
our results can be used to select suitable solutions for a specific context.

The remainder of this work is structured as follows: We begin by discussing
related work in Section 2 and lay out our methodology in Section 3. ZTA compo-
nents and protocols, together with their requirements, are defined and analyzed
in Section 4. Existing and emerging ZTA software and protocols are discussed
in Section 5. We evaluate the solutions and present our results in Section 6.
Challenges and future work are discussed in Section 7 and the paper concludes
with Section 8.

2 Related Work

High-level requirements, or principles, for ZTA are well established and have been
discussed extensively in the literature. NIST [1] defines seven tenets for ZTA.
Kindervag, in [7], laid out reasons and key concepts for ZTA. ZTA core principles
from a business perspective and example use-cases were proposed in a white
paper by The Open Group [8]. In a later publication from the same consortium,
these principles form the basis for nine high-level commandments for ZTA. While
a universally accepted definition of ZTA is yet to be established, consensus for
all high-level requirements formulated in these publications emerged.

Requirements have also been discussed for specific use-cases: Rose, in [9],
proposes requirements for the implementation of ZTA at federal agencies. Rules
for integrating legacy devices into Industrial Control Systems (ICS) based on
ZTA were proposed by Køien, see [10]. The literature also provides requirements,
challenges and lessons learned regarding real-world ZTA realization. Google pub-
lished an article series dubbed “BeyondCorp” in 2014, see [3], discussing their
approach and application of ZTA in great detail. Similarly, Netflix presented

‘State of the Union’: Evaluating Open Source Zero Trust Components 3

their implementation of ZTA in 2018, see [4]. While specific applications or use-
cases can have more nuanced demands, the general principles for ZTA still hold.
For this reason, our aim is to formulate and evaluate requirements in an agnostic
manner.

Three major surveys of the literature concerning ZTA have been published
in the last two years. Yuanhang et al., see [11], conducted a survey of the aca-
demic literature, analyzing and comparing ZTA, identity and authentication,
access control mechanism, and trust evaluation mechanisms. This work focused
on advantages and disadvantages, current challenges and future research trends
for ZTA. Buck et al., see [12], did a systematic literature review including gray
literature. The authors state that ZTA has been gaining more and more inter-
est in both academia and practice over the last few years, as measured by the
number of publications per year. They also state that the literature primarily
focuses on conceptual issues and benefits of ZTA, while user-related aspects and
possible drawbacks are neglected. Finally, Seyed et al., see [13], surveyed the
literature and specifically discussed authentication mechanisms, access control
schemes, and encryption in the context of ZTA.

We also reviewed academic work with regard to federation in ZTA, as this
concept is highly relevant for ZTA components. The topic was explored by Ol-
son et al., see [14]. In this work, four design objectives for a distributed trust
mechanism were given. These design objectives are further broken down into
requirements resulting in a federated zero trust architecture in which trust is
established via an additional, external proxy component. The concept of Zero
Trust Federation (ZTF), together with a proof of concept implementation, was
published by Hatakeyama et al., see [15]. Federated operation raises privacy
concerns as context information about the user must be exchanged. The ZTF
approach allows users to retain control over this information when exchanging
with third parties. This is made possible through the use of the Continuous Ac-
cess Evaluation Protocol (CAEP) [16] and User Managed Access (UMA) [17],
an extension for OAuth2.0 [18].

While some publications in the area of zero trust touch the question of re-
quirements for specific components, to the best of our knowledge this is the first
academic work that collects and summarizes requirements for each component
of a ZTA and evaluates available software solutions and protocols against these
requirements.

3 Methodology

All data used in this work was acquired in April 2023. Google Scholar, the
BASE database and the backward snowballing technique [19] were employed to
collate relevant academic publications. While we did not use a specific search
string, we included works in the field of zero trust that discuss general and
specific requirements, broad surveys, and federation related publications in the
context of zero trust architecture. Gray literature and inaccessible documents
were excluded from the results.

4 Hilbig and Schreck et al.

Google, Github and the backward snowballing technique were used to find
suitable open-source zero trust software solutions and protocols. Our keywords
for this search were zero trust software, zero trust implementation and open
source zero trust. We excluded abandoned, undocumented and proprietary solu-
tions.

The selection of requirements for components was done as follows: Require-
ments concerning components were collected from related work, the primary
source being the NIST standard. We extended this initial set by adding needed
requirements for inter-component communication and federated operation. The
resulting set of requirements was then reviewed and discussed individually with
each member of our group. This review process was repeated twice, at which
point consensus emerged.

4 Architecture and Requirements

For this work, we use NIST’s definition of ZTA: “Zero trust architecture (ZTA)
is an enterprise’s cybersecurity plan that utilizes zero trust concepts and en-
compasses component relationships, workflow planning, and access policies. [...]”
[1]. Moreover, we note that NIST discusses four primary components: The Pol-
icy Enforcement Point, the Policy Decision Point, the Policy Information Point,
and optionally a client-side agent. These components were initially defined in
XACML [20]. They are used to establish trust and mediate access to resources
by evaluating authentication, authorization and assurance information for users,
devices and services.

Before discussing the components and defining their specific requirements,
we reflect upon the general architecture of ZTA and the vital concept of feder-
ation between ZTAs. In addition, we discuss the “control plane”, i.e., the inter-
component communication layer. All requirements listed in the following sec-
tions, together with a detailed description, can be found in Appendix A.

4.1 Architecture

ZTA is a fundamentally different approach to network security compared to exist-
ing perimeter-based networking. Instead of defining multiple zones with different
“trust levels” such as the Internet, a demilitarized zone (DMZ) and the intranet,
in ZTA, every asset and the network between assets is considered untrusted by
default. In perimeter-based networking, much effort is made to separate these
zones, for example by using firewalls and employing physical access control.
While ZTA does not attempt to separate assets into zones, a strict separation is
done based on the content of transmitted data: Control functionalities, i.e., all
communication done between ZTA components, reside on the “control plane”,
while all other data transfer happens on the “data plane”.

The architectural aspects of ZTA have been studied extensively in the past.
NIST, in [1], defined four major ZTA types together with requirements for ZTA
components, use-cases for ZTA and possible threats. We exclude the “Resource

‘State of the Union’: Evaluating Open Source Zero Trust Components 5

Portal” and “Device Application Sandboxing” models, as they do not incorpo-
rate a client side agent. Instead, we focus on the classic “Enclave” and “Device
Agent/Gateway” deployment models. Figure 1 shows a generic ZTA based on the
latter model, with ZTA specific components depicted in dark blue. It contains the
four main components, i.e., a Policy Information Point (PIP), Policy Enforce-
ment Point (PEP), Policy Decision Point (PDP), an agent, a subject accessing a
service via an endpoint and further data sources. In addition to the components
themselves, we identified five communication flows between components which
are specific to ZTA. They are numbered and discussed in the following sections
at the affected components. The remaining, unnumbered flows are not specific
to ZTA and can be realized with existing protocols and APIs.

Control Plane

Data Plane

Subject Agent Endpoint / Client PEP
Service /

Application

PDP

PIP

Data Sources IAM

24

5

3

1

Fig. 1. Generic Zero Trust Architecture with all communication flows

4.2 Federation

In a federated system, multiple distinct entities or organizations collaborate to
form a new, larger entity. Trust between participating organizations needs to be
established beforehand. In the context of ZTA, federation can be achieved by
connecting multiple independent ZTAs to allow seamless data exchange.

User, asset and policy-related information must be exchanged for federated
operation. When multiple ZTA’s collaborate in this way, that set of information
is extended – while all other aspects of ZTA stay essentially the same. PDPs and
possibly PIPs need to support this mode of operation, e.g., the sharing of data

6 Hilbig and Schreck et al.

between parties. From an architectural perspective, ZTA is therefore well suited
for federated operation.

4.3 Policy Enforcement Point

The PEP is responsible for enforcing access decisions made by the PDP. From
a network perspective, the PEP must be located anywhere between the source
and the target of every connection. Moving the PEP closer to the target can be
advantageous, as the scope of the trust zone is reduced or even eliminated in
case of direct integration in the target application.

We evaluate PEPs based on the following three requirements: (1) The ar-
chitecture, i.e., integrated into the target application, as a proxy component
between client and service, and client-side. (2) The protocol used for interacting
with the PDP is also a requirement, see Flow 1 in Figure 1. (3) Push-based de-
motion and termination of sessions are advanced capabilities a PEP can support
and therefore another requirement.

4.4 Policy Decision Point

The PDP is the central component of every ZTA and is responsible for validating
and deciding every single access request. Authentication and authorization need
to be considered separately here. The PDP needs to authenticate every request,
i.e., validating that the requesting party is actually the one it claims to be. This
process is usually delegated to Identity and Access Management (IAM) solutions.
Authorization is ensured by evaluating the policy. The decision can then be
based on authenticated user and, ideally, device information. Usually, services
or applications make some authorization decisions themselves. With ZTA, it is
possible to move these authorization decisions to the PDP. This approach allows
centralized and fine-grained access control schemes to be realized at the PDP.

We evaluate PDPs based on the following five requirements: (1) Supported
policy languages, (2) options for ingesting policies, and (3) mechanisms for policy
storage are crucial. (4) As a PDP needs to communicate with PEPs, PIPs,
and possibly other PDPs, the respective protocols for these purposes are also
evaluated, see Flows 1-3 in Figure 1. (5) The last requirement is the support for
federated operation.

4.5 Policy Information Point

The PIP is another central component in every ZTA. It collects all data needed
for making policy decisions from various data sources. This information is then
offered to the PDP in a standardized manner. Therefore, the distinction between
PDP and PIP is only functional, allowing the PIP to be possibly integrated into
the PDP.

We evaluate PIPs based on the following four requirements: (1) Data sources,
i.e., all supported means of acquiring data from external systems and databases.

‘State of the Union’: Evaluating Open Source Zero Trust Components 7

(2) Since PIPs need to interact with them, supported Identity Providers (IdPs)
are another central requirement. (3) The query protocol, i.e., the protocol the
PIP offers to PDPs is also relevant, see Flow 2 in Figure 1. (4) PIP-to-PIP
communication support, e.g., in distributed or federated environments is the
last requirement, see Flow 4 in Figure 1.

4.6 Agent

The agent is installed at the endpoint or integrated into the operating system. It
collects relevant information about the host system, such as the operating system
version and device trust related data. This information is collected centrally
and can be used by the PDP during policy evaluation. It is important to note
that some solutions use the agent to establish connections or tunnels to legacy
applications or services. This functionality can also be realized via proxies or
standalone software and is not necessarily part of the agent nor a requirement.
We argue that it is impossible to realize all fundamental ZTA goals in an agent-
less ZTA, a view also expressed by NIST, see [1]. Without this component the
PIP gains no knowledge about the state of the requesting device, making device
trust based decisions infeasible.

We evaluate three requirements for agents: Capabilities for (1) hardware
and (2) software collection, i.e., the types of data it can collect about the host
system. (3) The protocol used to transmit this data to PIPs or PDPs is the last
requirement, see Flow 5 in Figure 1.

4.7 Control Plane

Communication within a ZTA can be logically separated into the “data plane”
and the “control plane”. The actual communication is done on the data plane,
while management and control functionalities reside on the control plane. ZTA
components must therefore support protocols for communication on the control
plane. All protocols need to guarantee integrity, confidentiality, and reliability.
Non-functional requirements such as performance are out of scope for this work.

To the best of our knowledge, the current protocols for these communication
flows are either proprietary or custom-developed and tightly integrated into the
respective software solution without ongoing standardization efforts. Due to this
tight coupling, the protocols are evaluated as part of the component in question.

5 Implementations and Protocols

Our systematic analysis of ZTA software solutions and protocols suited for usage
on the control plane resulted in several implementations and emerging standards
that we discuss in the following sections. For each solution, we analyze and
discuss use-cases, implemented components, supported features, interfaces, and
finally, security properties of employed protocols.

8 Hilbig and Schreck et al.

The Envoy Proxy project is a proxy component for micro-services, i.e.,
cloud-native applications [21]. The software is supposed to be installed on the
application server and secures communication between applications by tunneling
via mTLS connections. Envoy can tunnel any TCP/UDP traffic. In addition, a
variety of application protocols are supported, for example, HTTP, Redis, and
Postgres. While the primary use-case is securing service-to-service communica-
tion, Envoy can also be used as an edge proxy that accepts requests from clients
and forwards those to services. The authorization decision for incoming requests
can be delegated to external components via custom filters. Envoy can there-
fore be combined with other zero trust solutions to work as a PEP and can be
deployed on Linux, macOS, Windows, and Docker containers. Envoy is licensed
under the Apache License 2.0.

OpenZiti offers a complete zero trust solution comprising all necessary com-
ponents: A PEP (EdgeRouter), a PDP (Controller), a PIP (integrated into the
controller), a client software (Client) and a custom developed control plane pro-
tocol [22]. Endpoints must use the Client to access applications secured with
OpenZiti. EdgeRouters form a mesh and are able to tunnel TCP or UDP-based
protocols over untrusted networks. The final EdgeRouter in front of the target
application (from a networking point of view) terminates the secure tunnel. In
addition to the tunneling mechanism, OpenZiti offers SDKs for C, C#, Swift,
and REST. Applications built on top of the SDK can directly interface with the
OpenZiti network without needing to terminate the tunnel. The access policy
is configured at the Controller. It offers “posture checks” that can be used for
authentication and device assurance: (1) operating system type and version, (2)
network adapter MAC address, (3) external MFA with a configurable timeout,
(4) running applications defined by the path of the executable, and (5) windows
domain membership. All connections inside an OpenZiti network are secured us-
ing mTLS with X.509 certificates. OpenZiti can be deployed on Linux, Windows,
macOS and Docker containers. The client component additionally supports An-
droid and iOS. All components except the client applications for proprietary
operating systems are developed as open-source software and licensed under the
Apache License 2.0.

Tailscale is a modern zero trust capable VPN solution that can be used to
build secure tunnels to services and applications over untrusted networks [23].
Tailscale consists of the client software installed at every host that should be
part of the network and the central server software. The clients form a mesh
network that securely tunnels traffic. The central coordination server is hosted
by Tailscale Inc. and coordinates the distribution of authentication keys and
access policies. A third-party open-source implementation of the coordination
server called “Headscale” is also available [24]. More complex setups are also
possible. For instance, Tailscale is able to construct complete VPN tunnels that
encompass all traffic originating from the client, so-called exit nodes. Tailscale is
based on Wireguard, a modern VPN protocol and software, see [25]. The client
software is available for Linux, BSD, Windows, macOS, iOS, and Android. The
coordination server software is available for Linux, BSD, Windows, and macOS.

‘State of the Union’: Evaluating Open Source Zero Trust Components 9

Tailscale is licensed under the BSD 3-Clause license while the client software
user interface code for Windows, macOS, and iOS is proprietary.

Pomerium is an access proxy solution comprised of four components: (1)
the proxy service, responsible for tunneling all traffic, (2) the authentication ser-
vice that connects the IdP to the system and manages session cookies, (3) the
authorization service that validates every request against a dynamic access pol-
icy, and (4) the “Data Broker Service” that stores session information, identity
data, and tokens [26]. The authorization and authentication components check
the context of the request, the requesting user’s identity and the device iden-
tity. Pomerium supports all HTTP-based traffic and allows tunneling arbitrary
TCP-based traffic via HTTP. Applications managed by Pomerium receive the
user’s identity via a signed JWT. The JWT’s signature can then be verified
by the application. Communication between the components is using gRPC se-
cured with X.509 certificates. Communication between Pomerium and services
or applications is secured via mTLS with X.509 certificates. Pomerium is licensed
under the Apache License 2.0 and can be deployed on Linux, macOS, and Docker
containers.

Boundary is an identity-based access solution consisting of the client soft-
ware, “Controller” and “Worker” nodes [27]. Both types of nodes can operate
redundantly for scaling and failover functionality. Client access requests are au-
thenticated via a controller node, while worker nodes act as proxies for the
actual application data. The communication between the service or application
and worker nodes is unencrypted, as the secure tunnel is terminated at the
worker node. Communication between nodes is based on mTLS secured with
X.509 certificates. Boundary can be deployed on Linux, Windows, and macOS
and is licensed under the Mozilla Public License 2.0.

Ockam is a library for secure end-to-end communication [28]. It serves as
a PEP and can be used to build zero trust capable Rust applications. Key es-
tablishment, rotation, and revocation as well as attribute-based access control
mechanisms are supported. Ockam supports TCP, UDP, Websockets and Blue-
tooth as transport protocols. Ockam applications establish secure channels via
the Noise Protocol Framework or the X3DH protocol [29]. Ockam is licensed
under the Apache License 2.0.

Oathkeeper is a zero trust capable HTTP reverse proxy with an integrated
decision API [30]. It can be used as a combined PEP and PDP while also sup-
porting PDP functionality in standalone mode. The reverse proxy ensures that
requests satisfying the access rule pipeline are forwarded to the upstream server.
The access rule pipeline consists of four components: (1) Authentication handlers
inspect and validate HTTP traffic using sessions (cookie-based), tokens, OAuth
2.0 or JWTs. (2) Authorization handlers check access permissions based on Ory
Keto or arbitrary remote HTTP and JSON endpoints. (3) Mutation handlers
can be used to transform and augment authentication information into formats
the authentication backend understands. This includes creating signed JWTs,
arbitrary HTTP header data and cookies. Authentication information can also
be enriched by querying external APIs. (4) Error handlers that define behavior

10 Hilbig and Schreck et al.

in case authentication or authorization fails. Options include JSON responses,
HTTP redirects, and HTTP 401 “WWW-Authenticate” responses. The access
control API can also be connected to Ambassador, the Envoy proxy, AWS or
Nginx.

Keto, see [31], is an open-source implementation of Zanzibar [32], an au-
thorization system developed by Google. It can be used as a PDP. Keto stores
the policy as relation tuples between subjects and objects. Relation tuples form
a graph from which permissions can be deducted. Relations can be queried via
HTTP and gRPC API endpoints, allowing read operations to check permissions,
query relations, and list objects. Write operations can be used to modify, insert
and delete objects and relations. Access to Oathkeeper and Keto APIs is secured
using HTTPS. Both solutions can be deployed on Linux, macOS, Windows, and
FreeBSD and are licensed under the Apache License 2.0.

The Open Policy Agent (OPA) is a general-purpose, open-source policy
engine [33] that can be used as a PDP. Together with the declarative “REGO”
policy language, it allows the creation and execution of fine-grained policies that
can be used to build ZTAs. OPA offers an HTTP REST API for evaluating
policies that returns JSON data. In addition, OPA can be integrated into Go
applications via an SDK. Policies can also be compiled into WebAssembly in-
structions and can be embedded into any WebAssembly runtime. OPA can be
deployed on Linux, macOS, Windows, and via Docker containers. OPA is licensed
under the Apache License 2.0.

The Secure Production Identity Framework For Everyone (SPIFFE)
and the accompanying SPIFFE Runtime Environment (SPIRE) are a stan-
dard and reference implementation for identification, attestation and certificate
distribution in dynamic software systems [34]. The SPIFFE standard defines
SPIFFE IDs that can be used as identities for services. These IDs can be en-
coded into SPIFFE Verifiable Identity Documents (SVIDs), cryptographically
verifiable documents, i.e., certificates. SPIFFE also defines an API for issuing
and retrieving SVIDs called the “Workload API”. SPIRE implements SPIFFE
and offers additional features. SPIRE consists of agents installed alongside the
application or service and a server component. SPIRE can perform node and
workload attestation and registration as well as rotate keys and certificates. It
also provides services with access to secret stores and databases and enables
federation of SPIFFE systems across trust boundaries.

SPIREs API endpoint is offered by the agent and used by a workload for
creating and validating SVIDs. Communication uses gRPC over a Unix Domain
or TCP socket. As SPIFFE is often used to establish a root of trust, TLS must
not be required by implementations. The communication between the agent and
the central server component is secured using mTLS with a pre-shared “bootstrap
bundle”.

In the context of ZTA, SPIFFE / SPIRE can be used as part of the control
plane. It can be used to quickly and securely retrieve, rotate, and manage service
identities and corresponding keys in cloud environments. In this context, con-
tainers for services are usually rapidly deployed and decommissioned. This is the

‘State of the Union’: Evaluating Open Source Zero Trust Components 11

primary use-case for SPIFFE / SPIRE, as requirements differ from traditional
mechanisms for identity management of client devices and servers. It is licensed
under the Apache License 2.0.

The Shared Signals Framework (SSF) is currently being developed by the
“Shared Signals Working Group” at the OpenID foundation and aims to stan-
dardize a security event sharing protocol [35]. The OpenID foundation plans
to develop and provide a reference implementation for SSF to facilitate inter-
operability testing. Two profiles have been developed for SSF: The Continuous
Access Evaluation Protocol (CAEP) and the Risk Incident Sharing and Coordi-
nation (RISC). CAEP was proposed by Google [16] and later merged into SSF.
Without Continuous Access Evaluation, access decisions are only made once
before establishing connections. To fully realize the benefits of ZTA, access de-
cisions must be evaluated continuously. To that end, CAEP standardizes events
for communicating access property changes between zero trust components. For
example, the “Device Compliance Change”-Event can signal that a device no
longer fulfills an organization’s security policy, possibly including a reason. Such
an event could be generated by an agent, received by a SIEM, and later taken
into account during policy evaluation at the PDP. RISC is the second profile in
development. It focuses on transmitting events and information concerning user
account security. While not an integral part of ZTA, it can be used for collabora-
tion in federated scenarios. Events have been specified to signal changes related
to accounts, credentials and recovery information. For example, RISC can be
used to prevent attackers from using compromised credentials several times at
different providers. As SSF is built upon Security Event Tokens (SET), see [36],
TLS 1.2 or higher must be supported for the transport of events. In addition,
SETs must be encrypted in case they contain personally identifiable information
(PII) and must ensure integrity, for example by using JWS [37].

Other solutions and commercial offers were found during our search
but not included in the evaluation: “beyond” [38] and “helios” [39] are zero trust
HTTP access proxy solutions. Due to missing documentation and stalled devel-
opment, these solutions were not considered. “TRASA”, see [40], is an identity
and context aware access proxy. It can be used to secure remote access to in-
ternal services. TRASA supports RDP, SSH, HTTP, and MySQL. Since the de-
velopment of TRASA has stopped in December 2021, it was excluded from the
evaluation. “Pritunl Zero”, see [41], is a zero trust proxy solution for SSH and
HTTP connections. While under active development, this software is licensed
under a custom license that only allows non-commercial use and forbids the
distribution of derivative works. It primarily serves the use-case of centralizing
the management of SSH keys through a custom-built certificate authority and a
custom SSH client. The offered authentication options are limited, and the solu-
tion supports neither device authentication nor assurance. The developers offer
a commercial and proprietary solution called “Pritunl” with extended features
and support. For these reasons, Pritunl Zero was excluded from the evaluation.

In addition to the open-source solutions described and discussed in the pre-
vious sections, we discovered multiple commercial zero trust offers. Google (Be-

12 Hilbig and Schreck et al.

yondCorp Enterprise) and Microsoft (integrated into Microsoft 365) are the pri-
mary vendors in this context. Both are cloud-based and offer advanced solutions
for zero trust security. These solutions are proprietary, hosted and operated by
third parties. Therefore, their capabilities cannot be evaluated like it is the case
with open-source software and are of lesser academic interest. Finally, NIST is
working on a practice guide titled “Implementing a Zero Trust Architecture” in
cooperation with industry partners, see [42]. The goal is to introduce a reference
ZTA built on commercially available technology.

6 Evaluation

A comparison of the nine ZTA software systems analyzed in this work is shown
in Figure 2. It is based on the generic ZTA constructed in Section 4. The im-
plemented components are highlighted for every software system investigated in
this work. The following evaluation is done on a per-component basis for the
requirements defined in Section 4 and listed in Appendix A. General findings
and directions for future work are discussed in Section 7.

Control Plane

Data Plane

Subject Agent
Endpoint /

Client
PEP

Service /

Application

PDPPIPData Sources IAM

1 2 3 4 5

6 7 8 9

OpenZITI Tailscale Envoy Pomerium Ockam

Boundary Oathkeeper Keto OPA

1

1

1

1 2

2

2

2 3 4

4

4

5 6

6

6

7

7 8

9

Fig. 2. Component-wise comparison of ZTA software

6.1 Policy Enforcement Point

Existing solutions support all three architectures for PEPs. Support for proxy
mode is implemented in all solutions except Ockam, a library that can be used

‘State of the Union’: Evaluating Open Source Zero Trust Components 13

to build zero trust capable applications. Integrated and client-side PEP oper-
ation is only provided by two solutions. This result can be attributed to the
fact that many solutions build tunnels for the transmission of data plane and
inter-component communication. The protocol to connect PEPs to PDPs is self-
developed in nearly all solutions. This prevents interoperability, i.e., mixing com-
ponents from different vendors. The only exception is the Envoy proxy project,
a standalone PEP implementation with vast filtering and processing capabilities
for requests. Envoy can query PDPs via gRPC and standalone HTTP calls, mak-
ing it the most capable solution in this regard. Finally, push-based demotion or
termination of connections is not documented for any solution. We assume that
this advanced capability was not prioritized in the past. We conclude that exist-
ing PEPs partially meet the requirements we defined, although interoperability
and non-tunnel based operation is lacking.

6.2 Policy Decision Point

The primary requirement for PDPs is the language in which policies are ex-
pressed. Only the Open Policy Agent uses a well-defined language for this pur-
pose (REGO), while all other solutions implement custom languages. It is unclear
why most examined solutions do not implement established policy languages
such as XACML. Policies can be ingested via various means in all solutions,
with CLI-based configuration being the most common method. We note that
none of the solutions allow querying external databases, which would be ideal
for large-scale and distributed ZTA environments. Similarly, only two solutions,
Pomerium and Boundary, support external storage of configured policies, with
the remainder supporting local storage only. The protocol for PDP-to-PIP com-
munication is custom developed by OPA, Boundary and Pomerium. In all other
solutions, the PIP is either part of the PDP itself or querying PIPs is unsup-
ported. For PDP-to-PEP communication, Oathkeeper and OPA implement a
custom-developed REST API, while Keto supports HTTP and gRPC APIs. All
other solutions use custom, non-interoperable protocols. Finally, PDP-to-PDP
communication, and therefore federated operation, is not supported by any of the
evaluated software systems. To conclude, existing PDPs are more mature than
PEPs, especially the standalone OPA, which is build for this exact purpose.
However, self-developed policy languages and inter-component communication
protocols are areas in which the requirements are not properly met.

6.3 Policy Information Point

We were unable to locate standalone implementations for PIPs. Instead, the
examined solutions implement the PIP as part of the PDP. This can serve as
an explanation to why no solutions supports external data sources apart from
Tailscale, Headscale, and Pomerium, which are able to use authentication data
from IdPs. They support a vast number of IdPs, among them G Suite, Azure,
and generic OIDC or SAML providers. In addition, all solutions use an internal
RBAC model for configuring an access policy. None of the solutions support a

14 Hilbig and Schreck et al.

protocol for connecting to PDPs, because they merge the PDP and PIP compo-
nents allowing data exchange to happen internally. For the same reason, feder-
ated operation is also unsupported in all solutions. This allows us to conclude
that the requirements for PIPs are not fulfilled in any solution.

6.4 Agent

Data collection about the host system’s software and hardware is the main func-
tionality for agents. None of the solutions fulfill these requirements in a strict
sense, i.e., collecting and transmitting this data to an external component such as
a PIP. Instead, agent implementations in Boundary, OpenZiti, and Tailscale es-
tablish tunnel connections to virtual overlay networks which terminate at PEPs.
OpenZiti is the only solution with rudimentary device assurance checks during
connection establishment, e.g., validating operating system type and version.
This also results in custom developed protocols for Agent-to-PIP communication
in solutions that implement this feature. Microsoft’s zero trust solution encom-
passes an agent component called “Intune” that is integrated in the Windows
operating system. It is a notable exception with regard to the data collection
requirement, as vast information about the state of both software and hardware
of the host can be collected and evaluated centrally. As Intune is a proprietary,
commercial solution, it can not be used in combination with third party ZTA
components. We conclude that in a strict sense, no open-source implementations
of agents exist, and therefore, none of the requirements are fulfilled.

7 Challenges and Future Work

In Section 5 we discussed the various aspects of current software solutions and
protocols for ZTA. The requirements for the evaluation were explained in Sec-
tion 4 and matched to the solutions in Section 6. Based on our detailed analysis,
we can identify the different challenges we have observed and formulate direc-
tions for future work in this field. In this section, we discuss them in detail.

Interoperability: Our current networks are based on open standards that
allow communication between individual solutions. This interoperability was cru-
cial for the success of many network technologies. In the field of ZTA, we cur-
rently see many proprietary solutions that do not allow this interoperability be-
tween implementations. Complete solutions that implement all four primary ZTA
components such as OpenZiti, Tailscale, and Pomerium offer few or no means to
interoperate with other solutions. Partial solutions such as Envoy or OPA im-
plement specific components and are better positioned in this regard by offering
custom API endpoints. Nevertheless, interoperability is a significant challenge
with existing solutions and a promising direction for future work. Standards for
inter-component communication need to be standardized and implemented.

Control Plane: We assess that no open standards or protocols exist specifi-
cally for communication between ZTA components on the control plane. This ap-
plies to both communication between individual components deployed as part of

‘State of the Union’: Evaluating Open Source Zero Trust Components 15

the same ZTA, for example, between a PEP and the PDP, and inter-organizational
communication in the federated scenario, i.e., between PDPs. Promising stan-
dardization efforts such as SSF are ongoing. SSF aims to address inter-organizational
and inter-service security event sharing. This is an essential step towards improv-
ing the overall security posture of IT systems and not limited to ZTA. These
protocols and standards need to be developed in the future. Research in this
direction can foster the adoption of ZTA by allowing cross-vendor component
compatibility.

Federation: As discussed in Section 4.2, ZTA is an ideal candidate for fed-
erated operation. We notice that none of the solutions we assessed support fed-
eration, which is not surprising given the lack of suitable control plane protocols.
Academic work concerning this topic is also sparse. As the adoption of ZTA pro-
gresses, the importance of federated operation will rise accordingly. We therefore
see the possibility for future work in federated architecture, policy evaluation in
federated systems, and privacy-related aspects.

Device Trust and Assurance: Existing solutions are well-positioned with
regard to user authentication. However, device identification, trust, and assur-
ance are severely lacking, as none of the solutions support an agent with the
necessary capabilities. Including information about client devices in the decision
process of the PDP is one of the main tenets of ZTA. This provides a variety
of directions for future work. For example, research can focus on how to acquire
this data in specific scenarios such as enterprise IT or cloud setups. Extending
this idea to diverse environments with limited hardware capabilities, such as the
IoT or OT space, is another possible direction. Protocol-based support can also
be considered, for example by integrating device identification and assurance
checks in standard authorization protocols such as OpenID Connect [43].

Policy Information Point: While PIPs as a concept are well-defined and
referenced by the literature, not a single standalone open-source PIP exists today.
Complete ZTA solutions offer PIPs with rudimentary functionality, falling short
of what is required by a wide margin. Specifically, interfacing with external data
sources other than IdPs, e.g., SIEMs or CTI systems, is not supported by any
solution. This hinders the adoption of ZTA as a PIP offers functionality central
to the idea of ZTA. Future work should examine why this is the case and focus
on developing solutions.

Agent: Challenges related to the agent component are similar to PIPs. First,
standalone agent components do not exist. Instead, they are implemented as
part of a larger solution as it is the case with Tailscale or OpenZiti, offering
only basic agent functionality. Microsoft offers an agent that is integrated into
the Windows operating system as part of their ZTA solution. We believe this
is the right approach to the problem since agents running as standalone com-
ponents in user space suffer from several drawbacks. For adequate visibility and
control functionality, they must run with elevated privileges and interface with
the operating system to acquire the necessary data. It would therefore be ideal
to integrate this functionality directly into the operating system. This task re-
lies on the vendor for proprietary systems such as Windows, macOS and iOS.

16 Hilbig and Schreck et al.

Future work can focus on how to securely acquire and collect this information
in open systems such as Linux and BSD derivatives, for example, by integrating
it directly into the kernel.

Scaling: One crucial factor in deploying ZTA within an organization’s IT
network is the topic of scaling. IT infrastructures must be globally reachable
with low latency and capable of handling a large number of user sessions si-
multaneously. Of the examined solutions, six support standalone operation only.
Therefore, we propose to look into this functionality in current and future im-
plementations.

8 Conclusions

Zero Trust Architecture is a network security paradigm in which trust, and thus
access, is explicitly granted based on user and device authentication. As an orga-
nization’s perimeter can no longer be clearly defined and protected, the location
of the user and the device does not impact authorization decisions within ZTA.
While is an emerging field of research with accelerating, commercial deployment
and usage, the state of open-source solutions is not well understood. In this
work, we surveyed available open-source ZTA solutions and discussed require-
ments for ZTA software components. Based on these, we evaluated how mature
the open-source software components are.

Our findings show that some solutions in the zero trust space aim to imple-
ment an “all-in-one” solution, i.e., all components necessary to deploy a ZTA. In
contrast to these, there are standalone components that are capable of interfac-
ing with third-party software, allowing modular ZTAs to be built. With regard
to protocols, the “Shared Signals Framework” standardization effort stands out
as a major development for an open control plane protocol. We identified seven
key challenges that offer the potential for future work: Component interoper-
ability, control plane protocols, and federated ZTA are still in the early stages.
Concerning components, we assess that standalone Policy Information Points
and agents are not available as of today. Device trust and assurance function-
alities are essential to ZTA but need to be improved going forward, as existing
solutions barely support them. Lastly, open questions regarding scaling in ZTA
also need to be addressed.

To conclude, we assess that in general, open-source solutions for ZTA are not
yet mature. Protocols for ZTA are even less developed than the software side.

Data availability

The full results of the evaluation, i.e., a table listing the components together
with our assessment of fulfilled requirements, is available online [44].

Competing interests

All authors declare that they have no conflicts of interest.

‘State of the Union’: Evaluating Open Source Zero Trust Components 17

References

1. National Institute of Standards and Technology: [NIST SP 800-207] Zero Trust
Architecture. NIST Special Publication - 800 series (2020)

2. T.J. Forum and H. World: Jericho Forum ™ Commandments. Forum American Bar
Association (2007)

3. R. Ward and B. Beyer: Beyondcorp : a new approach to enterprise security. ;login::
the magazine of USENIX & SAGE 39(6), 6–11 (2014)

4. B. Zimmer: LISA: A Practical Zero Trust Architecture. In: Enigma 2018 (Enigma
2018). USENIX Association, Santa Clara, CA (2018)

5. Microsoft Corporation: Zero Trust Model - Modern Security Architecture | Mi-
crosoft Security, (2022). https://www.microsoft.com/en-us/security/business/
zero-trust (visited on 04/13/2023)

6. Microsoft and Hypothesis Group: Zero Trust Adoption Report. (2021)
7. J. Kindervag: No More Chewy Centers : Introducing The Zero Trust Model Of

Information Security. (2010)
8. The Open Group: Zero Trust Core Principles, (2021). https://publications.

opengroup.org/w210
9. S. Rose: Planning for a Zero Trust Architecture : A Planning Guide for Federal

Administrators. (2022)
10. G.M. Køien: Zero-Trust Principles for Legacy Components: 12 Rules for Legacy

Devices: An Antidote to Chaos. Wireless Personal Communications 121, 1169–1186
(2021). doi: 10.1007/s11277-021-09055-1

11. Y. He, D. Huang, L. Chen, Y. Ni, and X. Ma: A Survey on Zero Trust Architecture:
Challenges and Future Trends. Wireless Communications and Mobile Computing
2022 (2022)

12. C. Buck, C. Olenberger, A. Schweizer, F. Völter, and T. Eymann: Never trust,
always verify: A multivocal literature review on current knowledge and research
gaps of zero-trust. Computers and Security 110, 102436 (2021). doi: 10.1016/j.
cose.2021.102436

13. N.F. Syed, S.W. Shah, A. Shaghaghi, A. Anwar, Z. Baig, and R. Doss: Zero Trust
Architecture (ZTA): A Comprehensive Survey. IEEE Access PP, 1 (2022). doi:
10.1109/ACCESS.2022.3174679

14. K. Olson and E. Keller: Federating trust: Network orchestration for cross-boundary
zero trust. Proceedings of the 2021 SIGCOMM 2021 Poster and Demo Sessions,
Part of SIGCOMM 2021 (2021). doi: 10.1145/3472716.3472865

15. K. Hatakeyama, D. Kotani, and Y. Okabe: Zero Trust Federation: Sharing Con-
text under User Control towards Zero Trust in Identity Federation. 2021 IEEE
International Conference on Pervasive Computing and Communications Work-
shops and other Affiliated Events, PerCom Workshops 2021 (2021). doi: 10.1109/
PerComWorkshops51409.2021.9431116

16. A. Tulshibagwale: Re-thinking federated identity with the Continuous Access Eval-
uation Protocol | Google Cloud Blog, (2019). https://cloud.google.com/blog/
products/identity-security/re-thinking-federated-identity-with-the-
continuous-access-evaluation-protocol (visited on 04/13/2023)

17. E. Maler, M. Machulak, J. Richer, and T. Hardjono: User-Managed Access (UMA)
2.0 Grant for OAuth 2.0 Authorization. Tech. rep., (2019)

18. D. Hardt: The OAuth 2.0 Authorization Framework. RFC 6749, RFC Editor (2012)

18 Hilbig and Schreck et al.

19. C. Wohlin: Guidelines for snowballing in systematic literature studies and a repli-
cation in software engineering. In: Proceedings of the 18th international conference
on evaluation and assessment in software engineering, pp. 1–10 (2014)

20. A. Anderson, A. Nadalin, B. Parducci, D. Engovatov, H. Lockhart, M. Kudo, P.
Humenn, S. Godik, S. Anderson, S. Crocker, et al.: eXtensible Access Control
Markup Language (XACML) Version 2.0. Oasis (2004)

21. Envoy Project Authors: envoyproxy/envoy: Cloud-native high-performance edge /
middle / service proxy, (2016). https://github.com/envoyproxy/envoy (visited
on 04/13/2023)

22. Styra, Inc.: OpenZiti: programmable network overlay and associated edge compo-
nents for application-embedded, zero-trust networking, (2019). https://github.
com/openziti/ (visited on 04/13/2023)

23. J. Fond: Juanfont/Headscale: An Open Source, Self-Hosted Implementation of the
TAILSCALE Control Server, (2020). https://github.com/juanfont/headscale
(visited on 04/13/2023)

24. Tailscale, Inc.: Tailscale is a WireGuard-based app that makes secure, private net-
works easy for teams of any scale. (2020). https://github.com/tailscale (visited
on 04/13/2023)

25. J.A. Donenfeld: Wireguard: next generation kernel network tunnel. In: NDSS 2017,
pp. 1–12. The Internet Society (2017)

26. Pomerium, Inc.: pomerium/pomerium: Pomerium is an identity-aware access proxy.
(2019). https://github.com/pomerium/pomerium (visited on 04/13/2023)

27. HashiCorp, Inc.: hashicorp/boundary: Boundary enables identity-based access man-
agement for dynamic infrastructure. (2020). https://github.com/hashicorp/
boundary (visited on 04/13/2023)

28. Ockam, Inc.: build-trust/ockam: Orchestrate end-to-end encryption, mutual au-
thentication, key management, credential management & authorization policy en-
forcement — at scale. (2018). https://github.com/build-trust/ockam (visited
on 04/13/2023)

29. M. Marlinspike and T. Perrin: The X3DH Key Agreement Protocol. Open Whisper
Systems 283, 10 (2016)

30. Ory Corp: ory/oathkeeper: A cloud native Identity & Access Proxy / API (IAP)
and Access Control Decision API that authenticates, authorizes, and mutates in-
coming HTTP(s) requests. (2017). https://github.com/ory/oathkeeper (visited
on 04/13/2023)

31. Ory Corp: ory/keto: Open Source (Go) implementation of "Zanzibar: Google’s
Consistent, Global Authorization System". (2018). https://github.com/ory/keto
(visited on 04/13/2023)

32. R. Pang, R. Caceres, M. Burrows, Z. Chen, P. Dave, N. Germer, A. Golynski, K.
Graney, N. Kang, L. Kissner, J.L. Korn, A. Parmar, C.D. Richards, and M. Wang:
Zanzibar: Google’s Consistent, Global Authorization System. In: 2019 USENIX
Annual Technical Conference (USENIX ATC ’19), Renton, WA (2019)

33. Styra, Inc.: open-policy-agent/opa: An open source, general-purpose policy engine.
(2015). https://github.com/open-policy-agent/opa (visited on 04/13/2023)

34. The SPIFFE authors: SPIFFE: Secure Production Identity Framework for Every-
one, (2017). https://spiffe.io (visited on 04/13/2023)

35. OpenID Foundation: Shared Signals – A Secure Webhooks Framework | OpenID,
(2017). https://openid.net/wg/sharedsignals/ (visited on 04/13/2023)

36. P. Hunt, M. Jones, W. Denniss, and M. Ansari: Security Event Token (SET). RFC
8417, RFC Editor (2018)

‘State of the Union’: Evaluating Open Source Zero Trust Components 19

37. M. Jones, J. Bradley, and N. Sakimura: JSON Web Signature (JWS). RFC 7515,
RFC Editor (2015)

38. cogolabs contributers: cogolabs/beyond: BeyondCorp-inspired HTTPS/SSO Ac-
cess Proxy. Secure internal services outside your VPN/perimeter network during a
zero-trust transition. (2017). https://github.com/cogolabs/beyond (visited on
04/13/2023)

39. C. Yakimov: cyakimov/helios: Identity-Aware Proxy, (2019). https://github.
com/cyakimov/helios (visited on 04/13/2023)

40. Seknox Pte. Ltd.: seknox/trasa: Zero Trust Service Access, (2020). https : / /
github.com/seknox/trasa (visited on 04/13/2023)

41. Pritunl, Inc.: pritunl/pritunl-zero: Zero trust system, (2017). https://github.
com/pritunl/pritunl-zero (visited on 04/13/2023)

42. A. Kerman, M. Souppaya, P. Grayeli, and S. Symington: Implementing a Zero Trust
Architecture (Preliminary Draft). Tech. rep., National Institute of Standards and
Technology (2022)

43. N. Sakimura, J. Bradley, M. Jones, B. De Medeiros, and C. Mortimore: OpenID
Connect Core 1.0. The OpenID Foundation (2014)

44. T. Hilbig: hm-seclab/paper-th-zta-components-materials: Supporting materials for
STM 2023, (2020). https://github.com/hm-seclab/paper-th-zta-components-
materials (visited on 08/19/2023)

A List of requirements

In the following, we list the requirements used in the evaluation together with a
short explanation, examples and the desired state.

A.1 Policy Enforcement Point

– Architecture: Integrated operation, i.e., directly integrated into the target
application or service, for example via libraries. Proxy mode, i.e., as a seper-
ate component in front of the server. Client side, i.e., the PEP is deployed
on the client device. All architectures are equally desirable.

– Supported protocols for PEP-PDP communication: A list of pro-
tocols the PEP supports for interacting with PDPs. Existing, well-defined
protocols with wide usage are desirable.

– Push-based demotion and termination: This advanced feature allows
PDPs to demote or terminate established sessions by instructing the PEP
to do so. Support for this is desirable.

A.2 Policy Decision Point

– Supported policy languages: A list of languages the PDP supports for
encoding policies. Existing, well-defined languages with wide usage are de-
sirable.

– Options for ingesting policies: A list of options allowing the ingestion of
policy information. Examples include user interfaces, REST APIs and the
file system. CLI- or API-based ingestion is preferred.

20 Hilbig and Schreck et al.

– Policy storage mechanisms: A list of supported ways to store policies.
The local filesystem is an example. Here it is desirable to have the option of
using a database.

– Supported protocols for PEP, PIP, PDP communication: A list of
protocols the PDP supports for interacting with other components. Existing,
well-defined protocols with wide usage are desirable.

– Federated operation: The capability and maturity of operating the PDP
in a federated environment. It is desirable to have this feature.

A.3 Policy Information Point

– Data sources: A list of supported data sources the PIP can query. Examples
include device registries, generic databases and CTI feeds. Support for many
sources is desirable.

– Identity providers: A list of IdPs the PIP can interface with, for example
generic support for SAML. Support for well known IdPs and protocols is
desirable, especially OIDC.

– Query protocol: The protocol, or the protocols, the PIP supports for
querying data. This protocol can then be used by the PDP for policy deci-
sions. Existing, well-defined protocols with wide usage are desirable.

– Supported protocols for PIP-PIP communication: In federated envi-
ronments, PIPs might need to interface with other PIPs to exchange data.
Existing, well-defined protocols with wide usage are desirable.

A.4 Agent

– Hardware-based collection capabilities: A list of information items the
agent is able to collect about the hardware of the client. Examples include
the secure boot state, firmware version information or CPU vulnerabilities.
It may be desirable to collect as much information as possible.

– Software-based collection capabilities: A list of information items the
agent is able to collect about the software of the client. Examples include the
operating system type and version, currently running software or antivirus
software state. It may be desirable to collect as much information as possible.

– Supported protocols for Agent-PIP communication: A list of pro-
tocols the agent supports for interacting with PIPs. Existing, well-defined
protocols with wide usage are desirable.

