
36 

security.txt Revisited: Analysis of Prevalence and Conformity in 2022 

TOBIAS HILBIG , THOMAS GERAS , ERWIN KUPRIS , and THOMAS SCHRECK , 
HM Munich University of Applied Sciences, Germany 

Determining the correct contact person for a particular system or organization is challenging in today’s Internet architecture. 

However, there are various stakeholders who will need to have such information, such as national security teams, security 

researchers, or Internet service providers, among others. To address this problem, RFC 9116, or better known as “security.txt,”

was developed. If implemented correctly, then it can help these stakeholders in finding contact information to be used to notify 

an organization of any security issues. Further, there is another proposal called “dnssecuritytxt,” which uses DNS records for 

this purpose. 

In this research article, we evaluated the prevalence of websites that have implemented security.txt and their conformity 

with the standard. Through a longitudinal analysis of the top one million websites, we investigated the adoption and usage of 

this standard among organizations. Our results show that the overall adoption of security.txt remains low, especially among 

less popular websites. To drive its acceptance among organizations, security researchers, and developers, we derived several 

recommendations, including partnerships with vendors of browsers and content management systems. 

CCS Concepts: • Security and privacy → Intrusion/anomaly detection and malware mitigation ; Network security ; 

Additional Key Words and Phrases: Security.txt, internet scanning, vulnerability disclosure, Incident Response 

ACM Reference format: 

Tobias Hilbig, Thomas Geras, Erwin Kupris, and Thomas Schreck. 2023. security.txt Revisited: Analysis of Prevalence and 

Conformity in 2022. Digit. Threat. Res. Pract. 4, 3, Article 36 (October 2023), 17 pages. 

https://doi.org/10.1145/3609234 

1

I  

n  

b  

t  

I
 

i  

z  

T

A

t

T

©

2

h

 INTRODUCTION 

n the age of rapidly evolving digital information systems, the ability of security researchers to quickly and easily
otify an organization of any security issues they may have discovered is crucial. Organizations should help
enevolent security researchers in effortlessly disclosing security issues to prevent threat actors from abusing
hem. However, these researchers are presented with another challenge once they find a vulnerability: “How do
 contact someone responsible in case I want to report a security issue that I found in their product?”

There are various methods that security researchers might use to notify the responsible party about security
ssues. These include messaging standard email addresses such as security@ , using contact forms on an organi-
ation’s website, or searching for contact information in centralized databases like FIRST’s Incident Response
. Hilbig, T. Geras, E. Kupris, and T. Schreck contributed equally to this research. 

uthors’ address: T. Hilbig, T. Geras, E. Kupris, and T. Schreck, HM Munich University of Applied Sciences, Munich, Germany; emails: 

obias.hilbig@hm.edu, thomas.geras0@hm.edu, erwin.kupris@hm.edu, thomas.schreck@hm.edu. 

his work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike International 4.0 License. 

2023 Copyright held by the owner/author(s). 

576-5337/2023/10-ART36 

ttps://doi.org/10.1145/3609234 

Digital Threats: Research and Practice, Vol. 4, No. 3, Article 36. Publication date: October 2023. 

https://orcid.org/0000-0002-2904-4758
https://orcid.org/0000-0001-9761-1243
https://orcid.org/0000-0002-2799-5197
https://orcid.org/0000-0002-8960-6986
https://doi.org/10.1145/3609234
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3609234
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3609234&domain=pdf&date_stamp=2023-10-06


36:2 • T. Hilbig et al. 

d  

s
 

t  

B  

s  

s  

t
 

f  

a  

d
 

a  

q  

W
 

a  

m  

d

2

V  

s  

e  

F  

r

2

S  

v  

t  

r  

a

2

G  

s  

t  

B  

fi  

c

2

O  

i  

s

D

atabase [ 7 ]. All of these options, however, suffer from shortcomings and a lack of adoption within the IT land-
cape [ 16 , 22 , 23 ]. 

An Internet-Draft titled “security.txt” was published in 2017 by Edwin Foudil. It describes a simple text file
hat can be placed on an organization’s website and aims to resolve the issues found with previous methods.
y providing all the necessary information in a standard format and location, both humans and automated
oftware can leverage it for vulnerability notifications. Over the years, lots of prominent websites have adopted
ecurity.txt and government agencies around the world started to recommend its usage [ 10 ]. In April of 2022,
he IETF standardized security.txt as RFC 9166 [ 9 ]. 

Our work aims to evaluate the prevalence and correctness of security.txt usage on the Internet in 2022. There-
ore, this article presents the first study on security.txt after its adoption as an RFC. Consequently, we want to
nswer two research questions: (1) How did the adoption rate of security.txt change during 2022? (2) How well
o deployed security.txt files adhere to the standard? 
For the first question, we scanned the one million highest-ranked websites based on the Tranco list [ 15 ] over

 time of 55 weeks and evaluated the percentage of websites that deploy a security.txt file. To answer the second
uestion, we analyzed all downloaded files, evaluating the standard’s technically and semantically correct usage.
e further evaluated a new standard called “dnssecuritytxt” [ 3 ]. 
The remainder of this article is structured as follows: We present background information on security.txt

nd alternative methods for vulnerability disclosure in Section 2 and examine related work in Section 3 . Our
ethodology and the scanner’s architecture are explained in Section 4 . We show our results in Section 5 and

iscuss them along with limitations and future work in Section 6 . Finally, Section 7 concludes this article. 

 BACKGROUND 

arious methods have been developed for vulnerability disclosure over time. In addition to these, we detail the
ecurity.txt standard in the following sections. All of these options have one or more shortcomings: Without prior
xperience, researchers might not know specific methods exist, and it can be hard to select a suitable method.
urthermore, these methods did not gain enough traction within the IT industry so that security researchers can
eliably use them as the standard way for vulnerability notifications. 

.1 RFC 2142 Emails 

tandard email addresses, such as security@ , abuse@ , info@ , webmaster@ , and so on, might be used to disclose
ulnerabilities. These email addresses were standardized in 1997 in RFC 2142 [ 5 ]. However, there is no guarantee
hat an organization uses or maintains standard email addresses or that these highly sensitive emails reach the
ight personnel. Previous studies have shown that their adoption is fairly low even though the standard has been
round for over two decades [ 22 , 23 ]. 

.2 SECURITY.md 

itHub pioneered another method of publicizing information on the vulnerability disclosure process. Here,
oftware projects might place a SECURITY.md file in the top-level directory of their repository, which details
he project’s rules and process for disclosing vulnerabilities [ 11 ]. Similarly, a project might deploy a BUG-

OUNTY.md file to draw attention to its bug bounty program and clarify its expected procedure. SECURITY.md

les can be a great resource for manual disclosure but lack a standard format allowing for automated notification
ampaigns. 

.3 Contact Forms and Social Media 

ther methods of directly contacting an organization can include using a contact form on their website or reach-
ng out to social media accounts. However, locating and filling out contact forms on websites and messaging
ocial media accounts is a cumbersome process that does not scale well for automated disclosures. 
igital Threats: Research and Practice, Vol. 4, No. 3, Article 36. Publication date: October 2023. 



security.txt Revisited: Analysis of Prevalence and Conformity in 2022 • 36:3 

2

d  

2  

T
 

r  

e  

m  

i

2

S  

d  

o  

U  

f  

o  

fi  

t

2

R  

p  

r  

fi  

g  

I
 

s  

t  

d  

d
 

e  

o  

F  

p
 

s  

l  

fi
 

o  

u
 

t  
.4 dnssecuritytxt 

nssecuritytxt is an emerging method to publish contact information via DNS and was published on March 25,
021. The admin can either use a subdomain called _security or add the information to the apex of the domain.
hese two options are discussed in detail in Reference [ 3 ]. 
The mandatory security_contact record is supposed to contain contact information while the security_policy

ecord should include a link to a security policy [ 3 ]. Similar to security.txt, the contact information must contain
ither an email address or a URL to a website. If more communication channels are possible, then multiple records
ay be added. As for the security_policy , it is not specified how to handle multiple entries. For both fields, the

nformation is published as a TXT record that is limited to 255 characters. 

.5 Centralized Methods 

ecurity researchers might use centralized databases to find contact information as an alternative to the stated
ecentralized methods. For instance, the WHOIS database might include the contact information of the domain
perator. Nowadays, most of the information is protected by privacy laws such as the GDPR in the European
nion [ 24 ]. The Forum of Incident Response and Security Teams (FIRST) maintains a database with in-

ormation about CERTs/CSIRTs (Computer (Emergency/Security Incident) Response Team) of member
rganizations [ 7 ]. FIRST offers a beta version of a public API for security researchers to access their database to
nd the relevant member CERT/CSIRT. A FIRST membership comes with significant costs and the requirement
o operate a CERT/CSIRT. This is one of the reasons why this option is not feasible for smaller organizations. 

.6 Security.txt 

FC 9116 defines a standardized way for organizations to publish information about their vulnerability disclosure
rocess through a text file called security.txt placed on their website. Researchers who discover a security issue
elated to the organization can use this information to easily find the correct contacts to notify about their
ndings. The usage of security.txt was first proposed as an Internet-Draft by Edwin Foudil in 2017 and quickly
ained traction in the information security industry [ 4 ]. In April 2022, security.txt took the second step of the
ETF standardization process [ 2 ] and was promoted to an RFC [ 9 ]. 

Security.txt was designed to be human-readable and parsable by machines at the same time to enable large-
cale vulnerability notification campaigns. Therefore, the standard specifies two locations for security.txt files:
he root directory, i.e., domain.tld/security.txt , or the .well-known directory as defined in RFC 8615 [ 17 ], i.e.,
omain.tld/.well-known/security.txt . In case security.txt is present in both locations, the file in the well-known
irectory must be preferred [ 9 ]. 
The RFC strictly enforces the use of HTTPS when retrieving the file to guarantee its integrity. Additionally,

very web URI in the security.txt file must start with https:// to ensure this requirement is met along the process
f gathering information. The content type must be set to text/plain and the file must be encoded as utf-8 .
inally, a security.txt file is only valid for the exact domain where it is found and not for any of its sub- or
arent-domains [ 9 ]. 
Each line of a security.txt file contains a key-value-pair separated by a colon, a comment denoted by a hashtag

ign at the start of the line, or an empty line. Additionally, the file can be signed using PGP. The RFC currently
ists eight different keys, or so-called “fields.” Only the Contact and Expires fields are mandatory, while all other
elds are optional. The following lists the standard fields according to the RFC [ 9 ]: 
Contact: This field can contain links to contact web pages, email addresses and telephone numbers. The value

f the contact field needs to be a syntactically correct URI as described in RFC 3986 [ 1 ]. Therefore, contact values
sually start with https:// , mailto: , or tel: . Multiple Contact fields are allowed and are ordered by preference. 
Expires: This field contains the time and date the security.txt file expires at. It should be formatted according

o ISO.8601 as defined in RFC 3339 [ 14 ]. An expired security.txt file can be considered stale and should not be
Digital Threats: Research and Practice, Vol. 4, No. 3, Article 36. Publication date: October 2023. 



36:4 • T. Hilbig et al. 

t  

T
 

a
 

s
 

s  

c  

u
 

n  

h
 

s
 

o
 

s  

s  

t

3

T
 

o  

a  

s  

s
 

s  

t  

p  

d  

m  

w
 

T  

v  

t  

s  

s  

t
 

fi  

2  

t  

D

rusted anymore. The RFC recommends for expiry dates to not exceed a date of twelve months into the future.
his field must not appear more than once per security.txt file. 
Canonical: The location of the security.txt file on this particular web server as a web URI. This serves as an

dditional trust mechanism if the file is digitally signed. 
Policy: Here, an organization can link to its vulnerability disclosure policy so researchers can adhere to their

pecific process and report issues responsibly. 
Encryption: This field references the key that should be used to encrypt messages to the organization. The

ecurity researcher has the additional responsibility of authenticating the key. The RFC specifies that the en-
ryption key itself should not be used as the value for this field. Instead, a reference to the key file should be
sed, such as a web link, the OPENPGPKEY DNS record of the domain, or the key’s fingerprint. 
Preferred-Languages: A comma-separated list of languages that the organization prefers when receiving vul-

erability notifications. Languages should be formatted as short-form tags defined in RFC 5646 [ 18 ] and do not
ave to be ordered according to preference. This field must appear at most once per file. 
Acknowledgments: This field contains a link to a web page where the organization recognizes the help of

ecurity researchers by listing their names and security-related contributions. 
Hiring: This field can be used to link open job postings in security-related positions at the particular

rganization. 
The RFC allows for additional fields to be added in the future. This process is handled by the Internet As-

igned Numbers Authority (IANA) , which has a registry of valid fields for a security.txt file [ 13 ]. Finally, the
tandard recommends digitally signing the security.txt file using an OpenPGP clear-text signature. In this case,
he Canonical field is recommended to be included in the file so its location can be authenticated as well. 

 RELATED WORK 

o the best of our knowledge, only two studies have evaluated the adoption of security.txt across the Internet. 
Poteat and Li [ 19 ] analyzed the existence and contents of security.txt files and monitored their adoption rate

ver a span of 15 months from January 2020 to April 2021. They found that security.txt files were deployed on only
 small percentage of websites, with higher-ranked ones being more likely to adopt the standard. Their results
how that 16% of the top 100, 10% of the top 1k, 4% of the top 10k, and around 1% of the top 100k websites deployed
ecurity.txt. These percentages denote the maximum deployment rate per grouping throughout their study. 

In contrast to our work, the authors used a dynamic set of websites taken from the Alexa Top 100k list, which is
ubject to frequent change and portrays a comparably small view of the overall Internet landscape. Additionally,
heir longitudinal investigation was conducted before security.txt became an Internet-Standard and during a
eriod when the draft changed regularly. For example, the Expires field was made mandatory in version 10 of the
raft, which was published in August 2020 [ 8 ], right in the center of their measurement period. This might have
ade evaluating the compliance of security.txt files harder, because website operators might not have caught up
ith the most recent version of the draft yet. 
Similar to our investigation, Findlay and Abdou [ 6 ] scanned a static set of websites using the Tranco list [ 15 ].

heir research focused on the overall adoption of security.txt and the websites’ compliance across different
ersions of the Internet-Draft. Along with results comparable to the study of Poteat and Li [ 19 ], they found
hat most websites implemented outdated versions of the security.txt draft. However, this second, more recent
tudy was conducted over the span of only one week at the end of 2021, with one crawl per day. As their results
how no significant changes between these crawls, their analysis is based only on the last scan. This study could
herefore not determine any long-term changes in the adoption rate of security.txt. 

Before security.txt was introduced as an Internet-Draft, security researchers had to rely on other means of
nding contact information of system administrators to notify them about vulnerabilities they found. In their
016 study, Li et al. [ 16 ] evaluated different means of notifying administrators about vulnerabilities found in
heir systems. They differentiated between direct communication channels, such as mailing the contact found
igital Threats: Research and Practice, Vol. 4, No. 3, Article 36. Publication date: October 2023. 



security.txt Revisited: Analysis of Prevalence and Conformity in 2022 • 36:5 

Fig. 1. Pipeline showing the architecture of our scanning and analysis framework. 

i  

s  

r
 

w  

f  

r  

e  

r
 

p  

o  

i  

a  

a
 

s  

t

4

T  

b  

F  

i  

T  

i  

f  

J

4

A  

r  
n the WHOIS database, and indirect channels, i.e., using an intermediary, such as national CERTs. Their results
how that directly reaching out to the WHOIS contacts with detailed information results in higher remediation
ates compared to using indirect channels. 

Stock et al. [ 23 ] identified numerous vulnerable websites and examined additional channels to contact the
ebsite operators, e.g., the generic email addresses security@ , abuse@ , and webmaster@ . Similar to Li et al., they

ound that these direct communication channels via email were more effective, because intermediaries may not
elay the disclosed information to the website operators. However, their results show that these standardized
mail addresses were only scarcely adopted, especially by less popular websites, which led to an unsatisfactory
emediation rate. 

In a subsequent study in 2018, Stock et al. [ 22 ] evaluated obstacles in large-scale vulnerability disclosure cam-
aigns. Building on previous works, they only used direct communication channels. They explored additional
nes besides emails, such as filling out contact forms, mailing letters to organizations’ postal addresses, messag-
ng organizations’ social media accounts, and calling publicly available telephone numbers. They found these
dditional channels to require a lot of manual effort while at the same time resulting in too little of a success rate
nd therefore determined them to be ineffective from a cost perspective. 

The three aforementioned studies on alternative methods for vulnerability disclosure stress the need for a
tandard way of establishing a communication channel between security researchers and operators—a problem
hat security.txt aims to resolve. 

 METHODOLOGY 

his section describes our methodology by giving the necessary definitions and explaining the architecture we
uilt for our scanner. A detailed explanation for each step of the pipeline is given in the following sections.
igure 1 visualizes the overall process. Our scanning framework consisted of four components: The downloader
ngested a list of URLs and a set of user agents, tried to download each file, and saved all results for later analysis.
he filter module removed non-security.txt files from further processing. Then, the checker module extracted all

nformation from the filtered set of files. Finally, the analyzer component was used to aggregate the information
or presentation and visualization. All components were custom-developed using Python 3. For the final analysis,
upyter notebooks were used. 

.1 Hardware and Infrastructure 

ll scanning and analysis tasks ran on one virtual machine with 16 cores and 96 GiB RAM. The virtual machine
an Debian 11 on Kernel 5.10, with automatic security and software updates enabled. The hypervisor was running
Digital Threats: Research and Practice, Vol. 4, No. 3, Article 36. Publication date: October 2023. 



36:6 • T. Hilbig et al. 

o  

w  

o

4

O  

t  

m  

l  

w  

i  

s  

l  

o  

2  

i  

h

4

W  

d  

t  

a

4

W  

c  

a  

V  

d  

u

4

O  

d  

s  

s
 

d  

s
 

m  

c

1

2

3

4

D

n dual socket AMD EPYC 7352 24-Core CPUs. The Internet connection with a symmetrical speed of 2.5 Gbps
as provided by the Leibniz Supercomputing Centre. The DNS resolver was provided by the Munich University
f Applied Sciences. 

.2 Timeline and Procedure 

ur scans ran from December 26, 2021 to January 15, 2023, covering 55 weeks with 42 successful scans. We au-
omatically started scans at midnight on Saturdays, except for one scan on October 23, 2022, which was started
anually at 5:58 p.m. Each scan lasted about 30 h using the aforementioned hardware. We used the Tranco

ist 1 [ 15 ], generated on February 6, 2021, as the basis for our scanning. This list consists of the top one million
ebsites together with their rank. The time limit for each request was set to 10 s, a value empirically determined

n a previous study; see Findlay and Abdou [ 6 ]. Our list was generated nearly 12 months before we began the
canning process. This decision was made on purpose, as we wanted to compare our results to previous (unpub-
ished) work at that time. The Tranco list was created with the explicit goal of ensuring the stability of the list
ver time. We calculated the size of the intersection set of domains between our list and the list from December
6, 2021, for three groups: top 10k (8,448 entries), top 100k (74,142 entries), and top 1M (683,537 entries). As the
ntersection rate is quite high, especially at the top of the list, we conclude that using a more recent list would
ave only marginally altered the results. 

.3 File Locations 

e attempted to download security.txt files from both allowed locations: domain.tld/.well-known/security.txt and
omain.tld/security.txt . For our analysis, both locations were merged. In case a file was found in one location only,
his file was used. If files were found in both locations, then we used the one from the .well-known directory. In
ccordance with the RFC, we only issued requests using the HTTPS protocol. 

.4 User Agents and Opt-Out Process 

e used two user agents for scanning: Chrome 2 and cURL. 3 Each user agent was used with and without a suffix
ontaining a URL pointing back at our scan server. 4 As the user agent is commonly logged by web servers,
dministrators were able to visit our web page for additional information about our research and contact details.
ia this mechanism, organizations could decide to opt-out of future scans. During the scanning period, one
omain operator decided to do so. Therefore, this domain was excluded from future scans and all analyses. We
sed no other HTTP headers in the request except for Accept: */* . 

.5 Definitions 

ne might argue that a security.txt file can only be considered to be valid if it fully conforms to the ABNF
efinition in Section 4 of the specification [ 9 ]. Doing so would exclude a large number of files with minimal
yntactical or semantical errors from the analysis. Such files could still be processed by both humans and less
trict machine parsers. Therefore, our definitions are as follows: 

valid response: A response from a web server that was considered to be valid by the downloader module, as
escribed in Section 4.6 . In this case, the request was successful, a file was downloaded, and it did not exceed the
ize limitations of the security.txt specification. 

filtered security.txt file: A security.txt file that passed the filter module, as described in Section 4.7 . The filter
odule removed files that are no security.txt files, such as HTML pages, JSON objects, and binary data. It also

hecked for at least one key-value-pair, therefore these files were highly probable to be security.txt files. 
 Available at https://tranco-list.eu/list/9622 
 Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.110 Safari/537.36. 
 curl/7.80.0. 
 ### This is a crawler for security.txt files. For more information visit https://securitytxt-scan.cs.hm.edu/### 

igital Threats: Research and Practice, Vol. 4, No. 3, Article 36. Publication date: October 2023. 

https://tranco-list.eu/list/9622
https://securitytxt-scan.cs.hm.edu/###


security.txt Revisited: Analysis of Prevalence and Conformity in 2022 • 36:7 

4

T  

d  

o  

c  

t  

t  

C  

E  

w  

s  

fi  

a

4

A  

s  

s  

g
 

I  

w
 

t  

J  

fi  

c  

c  

a
 

o  

fi  

t  

t  

r  

C  

w

4

T  

T  

m  

t  

e  

e  

5

.6 Downloader 

he downloader module ingested the list of URLs to be scanned. The order of the list was randomized before the
ownload procedure started. Eight requests were issued in sequence for each domain, one for each combination
f user agent and file location. A response from a web server was considered to be valid if the HTTP response
ode was 200 and the body of the response was a syntactically correct security.txt file as stated in Section 5.4 of
he RFC [ 9 ], i.e., the number of lines was at most 1,000, the number of characters per line was at most 2048 and
he overall size was at most 32 KBs. Furthermore, any server response was downloaded so that no pre-filtering by
ontent-Types occurs. This ensured that no security.txt files were excluded because of misconfigured servers.
rroneously included non-security.txt files were later excluded by the filter module. The download was done
ith 200 threads in parallel. This number was empirically determined – fewer threads reduced the download

peed, and more threads only increased the memory footprint of the application. In addition to the retrieved
les, we stored response codes, user agents, locations, and the exact time of each request in a CSV file for later
nalysis. 

.7 Filter 

fter scanning, retrieving, and downloading the requested sites’ content, it was essential to remove all non-
ecurity.txt files to answer the first research question. Removing non-security.txt files was performed as a three-
tage process in the filter module. The filter module ingests all downloaded files and sorted them into five cate-
ories: security.txt files, empty files, files containing comments, files containing the at sign, and all other files. 
The python-magic [ 12 ] library was utilized in the first step of the filtering process. All files detected as HTML,

mage, GIF, SVG, JSON, XML, PHP, SGML, or binary data were removed. Empty files and files containing only
hite space were also excluded in this step. 
Four methods were employed in the second step for more in-depth content analysis. The first method utilized

he python JSON library. If no error occurred while loading a file, then the file was assumed to contain a valid
SON object. Additionally, the second method was built upon the beautiful soup library, which reviewed if a
le contains HTML tags. Furthermore, the third method checked whether files consisted only of white space
haracters. Finally, the fourth method checked if a file conforms to the typical security.txt structure, i.e., if it
ontained at least one colon. 5 All files except the ones detected with the last method were excluded from further
nalysis. 

Ultimately, files that did not pass the regular expression method were analyzed in a third step for the existence
f hash or at signs. In case such characters were found, they were added to the first category of files. All other
les were saved for manual screening. Analysis of a random sample of 157 files from the first scan confirmed
hat the filter model worked as designed. None of the excluded files were security.txt files, although most of
he files containing an at sign indeed contained at least an email address that could be used to contact the
espective organization. This filtering process guaranteed that no security.txt files were removed erroneously.
onsequently, after filtering all the downloaded files, we assumed that the remaining files were security.txt files
ith a high probability. 

.8 Checker 

o answer the second research question, the security.txt files had to be examined from a semantic perspective.
his investigation was conducted through the semantic checker module. This module ingested all files the filter

odule classified as security.txt files. The required fields Contact and Expires were extracted in the first step of
he semantic checker module. Since it is permitted to specify multiple Contact fields, all Contact values were
xtracted and separated into emails, URLs, and telephone numbers. The values of the optional fields were also
xtracted, though not validated for their semantic correctness. After the extraction, the semantic checks for the
 Via the following regular expression: (.*):(.*). 

Digital Threats: Research and Practice, Vol. 4, No. 3, Article 36. Publication date: October 2023. 



36:8 • T. Hilbig et al. 

e  

a
 

c  

t  

d  

m  

o
 

o  

w  

w  

w
 

E  

e  

w  

d  

s  

fi  

c
 

s  

n
 

p  

O  

o  

t  

r  

c  

a  

r

4

T  

l  

t  

o

4

A  

d  

t  

t  

r  

D

mail and URL values in the Contact field and the value of the Expires field were conducted. This module stored
ll extracted information in a CSV file for later analysis. 

For the semantic check of the emails, several regular expressions were used. The outcome from the semantic
heck of an email could either be whitespaces , brackets , missing_mail_to , invalid , or valid . Whitespaces meant that
here were spaces in-between mailto: and the email. Sometimes, at/dot or [at]/[dot] were used instead of at signs or
ot characters. Therefore, they received the status brackets . Missing_mail_to indicated that the mandatory prefix
ailto: was not present. Invalid emails did not pass the semantic check, and valid emails fulfilled all requirements

f the RFC. All email values except those classified as invalid can be read by humans. 
Like the emails, URLs were also analyzed semantically using several regular expression patterns. The result

f the semantic check of an URL was http when the URL contained http:// . However, if neither http:// nor https://

as detected, then the result of the semantic check was no_protocol . Furthermore, the outcome could be invalid

hen an URL did not pass the semantic check. Nonetheless, if all requirements were satisfied, then the result
as valid . 
The dateutil library was used besides regular expressions for the semantic check of the Expires field. The

xpires field was investigated semantically for two aspects. The initial analysis was concerning the format. An
xpiring date could be rfc3339_conform , parsable , or invalid . Expires fields that passed the regular expression
ere classified as rfc3339_conform . The remaining ones were analyzed with the library. If the library was able to
etect a date, then it was classified as parsable , otherwise as invalid . The second analysis evaluated whether the
pecified expiring date was expired or not_expired . The difference between the expiring date of the security.txt
le and the timestamp of the file retrieval was calculated with second precision. Since fields classified as invalid

ould still be human-readable, the results of this semantic check must be considered as a lower bound. 
We did not consider the rest of the file, including the optional fields, as relevant for our definition of a valid

ecurity.txt file. Thus, we did not semantically check the remaining fields or invalidated files based on additional,
on-standardized fields. 
An additional step in evaluating the compliance of security.txt files would be to verify the signatures some de-

loyments use. The reasons why we chose to not include signature validations in our methodology were twofold:
n the one hand, the standard recommends using clear text OpenPGP signatures but does not enforce this. Any
ther signature method might be used instead without violating the formatting rules the RFC introduces. On
he other hand, RFC 9116 explicitly states that security researchers must not assume that the key that might be
eferenced in the Encryption field is the one being used for signing the security.txt file. Instead, any other key
ould theoretically be used for signing the message without any reference in the file. The added value of this
nalysis could also be considered limited, as manually checking a small, random subset of the downloaded files
evealed that nearly all of them are unsigned. 

.9 Analysis 

he last step of our pipeline was the analysis module. To that end, three Jupyter notebooks employing the pandas
ibrary were used. The first notebook calculated all information related to the first research question based on
he results of the filter module, i.e., the deployment rates. The second and third notebook aggregated the results
f the checker module, allowing us to answer the second research question. 

.10 dnssecuritytxt 

 different approach was employed to analyze dnssecuritytxt. Analyzing DNS data, especially historical DNS
ata, is often done using so-called passiveDNS databases. In passiveDNS, sensors are deployed globally next
o DNS resolvers, preferably large DNS resolvers. Those sensors record the DNS resolver’s answers and save
his information in a database. Afterwards, this database can be queried to see the record name, record type, and
ecord data. The caveat of this approach is that domains that have never been queried are not part of the database.
igital Threats: Research and Practice, Vol. 4, No. 3, Article 36. Publication date: October 2023. 



security.txt Revisited: Analysis of Prevalence and Conformity in 2022 • 36:9 

Table 1. Number of Filtered Security.txt Files by User Agents and Location, 

Summarized Over All 42 Scans 

Location User Agent w/ link w/o link Difference 

.well-known 

cURL 208,960 208,565 −0.19% 

Chrome 209,116 210,992 0.90% 

root 
cURL 141,291 142,201 0.64% 

Chrome 141,358 143,369 1.42% 

H  

o
 

F  

u

5

T  

a  

i

5

S  

a  

w
 

o  

a  

o  

t  

c
 

i  

w  

d  

s  

u  

C
 

v  

d  

t  

w  

g  

d  

a  

o  

d

owever, this approach gave us the opportunity to query all records in the passiveDNS database without limiting
urselves to a fixed list of domains. 
For our research, we were kindly given access to an extensive passiveDNS database operated by the company

arsight [ 21 ]. We queried information regarding dnssecuritytxt using the open-source tool dnsdbflex [ 20 ]. We
sed the timeframe between October 1, 2022 and January 28, 2023 for our queries and analyzed the answers. 

 RESULTS 

he following presents our results for both research questions we defined. We first investigate how to best
ccess the security.txt files as well as their overall deployment rate before validating their contents semantically
n Section 5.3 . 

.1 Access 

uccessfully retrieving security.txt files depends on a number of factors. Therefore, we analyzed how the user
gent impacts the response rates. Our analysis also includes a comparison between the allowed locations at
hich a security.txt file can be deployed. 
User Agents: Over all scans with all user agents and both locations, the average success rate, i.e., the number

f valid responses as defined in Section 4.5 , was 3.8%. The highest success rate was achieved using the cURL user
gent and downloading the security.txt file from the root directory at 4.1%. With cURL as user agent, a link to
ur web page and targeting the .well-known directory, the success rate 3.5%. While cURL without a link received
he most technically correct responses, it was essential to consider the subset of files that were also semantically
orrect security.txt files as explained in Section 4.7 . 

The number of received, filtered security.txt files by user agent and location combination, based on all 42 scans,
s shown in Table 1 . We state that, in general, retrieval without a link to our scan server was more successful,
ith around 1 percentage point more files retrieved, the only exception being the cURL user agent at the root
irectory, where retrieval was 0.19% points less successful. Retrieval using Chrome as user agent was more
uccessful with a 0.5% point higher retrieval rate. Taken together, scanning without a link and with the Chrome
ser agent resulted in 1.1% points higher retrieval rate. All following analysis is therefore based on using the
hrome user agent without a link to our web page. 
Figure 2 depicts the types of errors we observed during the latest scan on January 15, 2023. All percentage

alues are based on the total number of eight million requests. The errors are grouped by type: Request Errors

enotes cases where the request itself failed to complete. These failures are split to show exact error codes from
he python-requests library. Request Success shows cases in which the request completed successfully, i.e., the
eb server returned some data. More than 50% of all requests contained error codes in the response. These are
rouped according to their HTTP status code. In about 10% of cases, a file was transmitted. This group is further
etailed, showing the result of the syntax check. The figure shows that about one-third of requests failed without
ny valuable data being transferred. Most successful requests received HTTP 4XX response codes. About half
f the files transferred failed the syntax check. Finally, about 4.5% of requests ended with a valid response as
efined in Section 4.5 , i.e., files that could be security.txt files. 
Digital Threats: Research and Practice, Vol. 4, No. 3, Article 36. Publication date: October 2023. 



36:10 • T. Hilbig et al. 

Fig. 2. Error types observed during the latest scan on January 15, 2023. 

Fig. 3. Deployment rate of security.txt files, according to rank groups. 

 

2  

t

5

F  

t
 

o  

o  

b  

a  

m

D

Location: During our latest scan on January 15, 2023, we received security.txt files from 8,446 domains. On
,394 (28.3%) web servers, the file was only available in the root directory, on 4,550 (53.8%) it was only located in
he .well-known directory. On 1,502 (17.7%) web servers, the file was offered in both locations. 

.2 Deployment 

or a more detailed representation of the results, the deployment rates were analyzed as groups of the top 100,
op 1k, top 10k, top 100k, and top 1M websites by rank. 

Figure 3 shows an overview of the deployment rates. The x-axis shows the time, and the y-axis the percentage
f websites with a filtered security.txt file. Table 2 shows a comparison of the deployment rates per group at
ut first and our last scan. Additionally, the changes in deployment rates between these scans are listed, using
oth absolute numbers and percentages relative to the group’s size. In the top 100, security.txt was deployed, on
verage, in 32.7% of websites, a percentage that remained largely stable throughout our study. Small variations
ight be attributed to temporary downtimes, e.g., for maintenance reasons. 
igital Threats: Research and Practice, Vol. 4, No. 3, Article 36. Publication date: October 2023. 



security.txt Revisited: Analysis of Prevalence and Conformity in 2022 • 36:11 

Table 2. Comparison of Deployment Rates of Security.txt Files, 

According to Rank Groups 

Group First Last Change (rel) Change (abs) 
100 32.0% 34.0% 6.3% 2 
1k 16.1% 18.8% 16.8% 27 
10k 7.9% 9.8% 22.9% 182 
100k 2.4% 3.2% 31.3% 763 
1M 0.7% 1.0% 28.6% 2,803 

First and Last refer to the first and last scans on December 26, 2021 and Jan- 

uary 15, 2023. 

Fig. 4. Distribution of fields found in security.txt files. 

 

n  

l
 

g  

p  

b
 

u  

k  

6  

t  

s

5

S
 

x  

fi  
It should be noted that some of the scans did not complete successfully, resulting in gaps in the figure, most
otably around September 2022. We adapted our implementation of the downloader component to reduce the

ikelihood of such failures for future scans. 
After security.txt became an RFC in April 2022, we saw a slight but steady increase in the adoption for all

roups except the top 100 websites. Overall, a notable increase in adoption during the 55 weeks long scanning
eriod can be observed. While the adoption rate of higher-ranked websites in the top 100 groups only increased
y 6.3%, the top 100k group increased by 31.3%. 

We also analyzed the deployment of dnssecuritytxt. For the subdomain _security. we found two organizations
sing this record to provide contact information. We conclude that this option of the standard is not widely
nown in the community. The usage of dnssecuritytxt in the apex of a domain is higher. In total, we found
3 records with security_mail information and 24 records for security_policy . The analysis of the entries shows
hat a total of 66 individual organizations are using this standard. However, some organizations only publish
ecurity_policy but no contact details. This violates the current draft’s specification. 

.3 Content 

everal aspects of the deployed security.txt files were investigated to answer our second research question. 
Existence of Fields: Figure 4 shows the frequency of the existence of all fields specified in the standard. The

-axis shows the time, while the y-axis shows the percentage of security.txt files of each scan containing the
elds. A Contact field existed in an average of 89% of all files. This percentage was very stable over the whole
Digital Threats: Research and Practice, Vol. 4, No. 3, Article 36. Publication date: October 2023. 



36:12 • T. Hilbig et al. 

Fig. 5. Results of the expiry date evaluation. 

s  

s  

n  

n  

i
 

f  

u  

3  

i  

C  

r  

r
 

t  

c
 

T  

i  

O  

i  

d  

b  

c
 

H  

a
 

s  

a  

e  

D

canning period. The Expires field, introduced in a later version of the standard, was found in 18% of the collected
ecurity.txt files in the first scan and in 35% in the latest scan. This shows that there is a slow adaption of the
ew version of the standard. There were a few select cases in which a security.txt file only had an Expires and
o Contact field. However, we only saw this 18 times per scan on average and thus determined this case to be

nsignificant for our analysis. 
For the optional fields, the Preferred-Languages field was most common, with presence increasing rapidly

rom 35% of security.txt files at the beginning of our study to 46% in the latest scan. The second most commonly
sed field was the Policy field, starting at around 36% but remaining comparably stable with a maximum of
8%. The field Encryption was present in 32% of security.txt files, also remaining fairly constant throughout our
nvestigation. Thus, its adoption rate was recently surpassed by the rate of the Expires field. The fields Hiring and
anonical were present in an average of 23% and 19% of security.txt files, respectively. Both of their deployment
ates remained fairly stable as well. Finally, the least common field was Acknowledgements . Its adoption rate
emained largely stable between 8.3 and 9.1%. 

Conformity of Contact Fields: Besides investigating the existence of required and optional fields, the values of
he Contact field were analyzed. We found that only 0.6% of files, on average, listed a telephone number as a
ontact. This percentage largely remained stable, ranging between 0.6% and 0.8%. 

Most emails, 63.5% on average, were valid emails, i.e., they were accepted by a regular expression for emails.
he percentage of valid emails increased over time, starting from 60% at the beginning of our study and reaching

ts maximum at 68% in the latest scan. An average of 34.8% of the emails were missing the required prefix mailto: .
ver the period of our study, the share of emails without mailto: steadily decreased, starting at 39% and reaching

ts minimum at 30%. Therefore, a clear trend toward standard-conform referencing of email addresses can be
erived. Only 0.9% of emails contained spaces between mailto: and the email address. Furthermore, emails with
rackets were only present in 0.8% of entries recognized as an email. Both of these percentages largely remained
onstant throughout our investigation. 

The results of the semantic check of the URLs show that almost every URL found in a Contact field was valid.
TTP-URLs were only used in 0.1% of cases and none of the extracted URLs were invalid or missing the protocol

ltogether. 
Conformity of Expires Fields: Figure 5 shows the results of the semantic check of the expiry dates. The x-axis

hows the time, and the y-axis the percentage of error types observed during the evaluation of the Expires field. In
ddition, the percentages for expired and non-expired fields are given. At the beginning of our study, 65% of the
xpiry dates were compliant with the standard. This percentage increased significantly, reaching its maximum
igital Threats: Research and Practice, Vol. 4, No. 3, Article 36. Publication date: October 2023. 



security.txt Revisited: Analysis of Prevalence and Conformity in 2022 • 36:13 

Fig. 6. Distribution of expiry dates for the first and last scan. 

o  

t  

w
 

s  

T
 

2  

o  

n  

w  

s  

s
 

o  

v
 

o  

t  

d  

s
 

f  

c

6

I  

p
 

t  

g  

w  
f 86% in our latest scans. Non-compliant dates that could still be parsed decreased from 34% at the end of 2021
o only 12% at the end of our investigation. Additionally, a relatively constant percentage of merely 1.1% of dates
ere invalid. This depicts a clear tendency toward conformity with the standard. 
Overall, most dates were not expired at the time of testing, and the number of expired dates remained largely

table at about 8.8%. Interestingly, two significant drops in non-expired dates happened around New Year’s Eve.
his finding can likely be attributed to website operators setting the expiration date to the last day of the year. 
Finally, Figure 6 shows the distribution of expiry dates for the scans done on January 16, 2022 and January 15,

023. According to the standard, the expiry date must be set at most one year in the future. This applied to 56.4%
f dates in the first and 48.9% in the last scan. Therefore, a majority of security.txt files with an Expires field did
ot adhere to the standard’s specification in this regard. However, as our latest scan took place in January 2023,
ebsite operators might not have updated their security.txt files with new expiration dates. The expiry date was

et to a time in the past in 10.9% and 15.1% of cases. In this subset, the average time since expiry was 159 days,
o roughly half a year. 

When analyzing our complete data set, the oldest expiry date was over 53 years ago and represents the day
f the Unix epoch. On average, non-expired expiry dates were set about 4 years into the future. However, this
alue is highly influenced by extreme cases that set their expiry dates to up to 970 years into the future. 

Most common contact domains: We analyzed the Contact fields in all security.txt files from the most recent scan
n January 15, 2023. The domains of Contact fields containing websites were extracted and grouped. Some of
he most used domains were hackerone.com , g.co , w w w.bmwgroup.com , and twitter.com . One explanation for this
istribution might be that large organizations publish their information on a multitude of web servers at the
ame time if they decide to use security.txt. 

dnssecuritytxt: The contents of dnssecuritytxt entries we analyzed only revealed one interesting fact. In total,
our organizations used an incorrect UTF-8 encoding within the “TXT” record. In all cases, a security researcher
ould still get the correct contact information. However, for automation use cases, this may result in errors. 

 DISCUSSION 

n the following sections, we discuss and interpret our results before detailing the limitations of our study and
roviding guidance for future work in this research field. 
Deployment: Our results show that most websites have not yet adopted security.txt. While about one-third of

he top 100 websites have a security.txt file deployed, these numbers shrink drastically when looking at larger
roups of lower-ranked websites. As expected, this shows that adoption is generally higher for more popular
ebsites. The organizations behind these websites presumably have more resources to spend on IT security
Digital Threats: Research and Practice, Vol. 4, No. 3, Article 36. Publication date: October 2023. 



36:14 • T. Hilbig et al. 

a  

w  

a  

n  

N
 

s  

c  

s
 

s  

1  

w  

1  

d  

T
 

t  

g
 

W  

p  

w  

a
 

fi  

s  

m  

r
 

l  

a  

t  

m  

i  

a
 

s  

i  

v  

a
 

r  

v  

T  

c  

w  

D

nd thus, are more likely to adhere to security standards and best practices such as security.txt. Furthermore,
e see that the adoption of the standard is gaining the most traction among lower-ranked websites. While the

doption is rather low in this group, it also offers the largest potential for improvement. Even though the absolute
umbers seem low, security.txt is still in its early stages, especially because it was only recently standardized.
evertheless, the increase in adoption rates is a promising development. 
Standardization: Our results show that security.txt is slowly gaining traction within the IT industry, especially

ince its standardization in April 2022. While the data shows no sudden leaps in adoption, the deployment of se-
urity.txt increased slightly faster after the standardization process concluded. This might signify that operators
tarted to become more attentive to the standard and its benefits. 

Comparison with Previous Studies: Our results align well and confirm the findings from previous studies about
ecurity.txt, which we discussed in Section 3 . For example, our analysis of the deployment rate in the top
00k group can be compared to those of Poteat and Li [ 19 ] from May 2021. In their work, the adoption rate
as about 1%, while we measured about 3.1% in our latest scan. In their study, a maximum of 16% of the top

00 websites offered a security.txt file while our maximum was at 35%. While the list of analyzed domains was
ifferent, the percentages are still somewhat comparable, as the rate of change in the top 100 is relatively low.
hus, the number of security.txt files more than doubled within less than two years. 
Findlay and Abdou [ 6 ] employed a stricter definition of a valid security.txt, e.g., they required the content

ypes to be text/plain only. Therefore, they determined the rate of security.txt adoption in the top one million
roup to be 0.49% while the rate of our latest scan stood at about 1%. 

User Agents: Additionally, we conclude that the user agent used for scanning has a marginal impact at best.
hile a few web servers might block scans issued by unknown or certain non-browser user agents, our results

rove that, for large-scale notifications campaigns, these differences are negligible. However, security researchers
ho aim to receive the maximum amount of possible security.txt responses should use a browser-based user

gent with a recent version. 
Existence of Fields: To discuss the correct usage of the standard, we first focus on the existence of mandatory

elds. The Contact field is the most prevalent field by far, ranging at around 90% adoption rate in deployed
ecurity.txt files. This is unsurprising, because publishing contact information for vulnerability disclosure is the
ain purpose of the security.txt standard. For the remaining 10% of files, security researchers would need to

esort to other methods of finding the contact information for the responsible organization. 
The second mandatory field, the Expires field, is present in roughly a third of security.txt files. Consequently, at

east two-thirds of security.txt files do not adhere to the RFC’s specification. This number used to be even lower,
s our scans at the beginning of this study as well as prior work have shown. Interestingly, the adoption rate of
he Expires field was the second lowest rate of any of the eight standard fields at the end of 2021. However, in the
ost recent scan, the Expires field is close to being the third most deployed security.txt field, showing the steep

ncrease in standard-conform adoption of this field. This clearly shows that the willingness of organizations to
dhere to the specification is increasing rapidly, especially since the draft became an official RFC. 

Furthermore, the existence of the optional fields reveals exciting facts: Most optional fields have a rather
table adoption rate throughout our study. However, the Preferred-Languages field experienced a steep increase
n adoption, similar to the Expires field. We conclude that organizations are eager to receive notifications about
ulnerabilities in their preferred language. For the other optional fields, interesting findings include that nearly
 third of organizations who deploy a security.txt list a policy URL and prefer communication to be encrypted. 

Field Conformity: Our results show that a significant number of websites do not follow the specification with
egard to the Contact field, most prominently in the case of email addresses. One of the reasons might be the pre-
ention of spam. Therefore, the standard would benefit from a method for securely publishing such information.
he very low percentage of telephone numbers is to be expected, since maintaining a hotline for incident dis-
losure purposes is costly. Some security.txt files also contained an invalid Expires field. While nearly every field
as machine-readable, some did not follow the format enforced by the standard. We believe that some website
igital Threats: Research and Practice, Vol. 4, No. 3, Article 36. Publication date: October 2023. 



security.txt Revisited: Analysis of Prevalence and Conformity in 2022 • 36:15 

o  

s  

d  

v

6

T  

u  

u  

r  

c
 

e  

s  

fi  

fi  

i
 

i  

t  

W  

s  

a

6

W
 

p  

m  

w  

e  

f  

i  

t  

t
 

a  

O  

i  

s
 

t  

c  

m  

m  

a  

w

perators input the expiry date manually. Ideally, such information should be automatically generated to prevent
uch mistakes. In addition, we found that one in ten files had an expiry date in the past. Website operators might
eploy security.txt and fail to maintain it later on. Notifying operators about soon to be expired files could be a
alid strategy to counter this problem. 

.1 Limitations 

hroughout our investigation, we found that a few web servers blocked scan requests for some of our tested
ser agents but not for others. Facebook.com, for example, blocked certain scans through cURL with an adjusted
ser-agent header. While blocking spoofed user-agents from accessing regular website content might be a
easonable security decision, we argue that access to the security.txt file should nevertheless be allowed for any
lient application. 

Our scanning architecture might have excluded some security.txt files on misconfigured web servers. For
xample, we only scanned using the HTTPS protocol, validated HTTPS certificates, and did not account for non-
tandard locations of the security.txt file. However, prior work showed that some websites offered a security.txt
le using only HTTP and not HTTPS. Even though the aim of our study was to include the maximum amount of
les that somewhat resemble a security.txt file, these examples of misconfigurations would have only marginally

mpacted our results. 
Finally, our scanning architecture could have accounted for more errors in the security.txt files that led to our

mplementation discarding them, even though a human researcher could have still used the presented informa-
ion. Our analysis could have included misspelled fields that a human researcher could reasonably understand.

e argue that the effort of accounting for every possible crawler detection technique, misconfiguration of web
ervers or files diverging from the standard would have been disproportionate to the marginal benefit for our
nalysis. 

.2 Future Work 

e envision multiple directions for future work in the context of security.txt: 
Security.txt was accepted as an RFC less than a year ago in April 2022. A longitudinal study covering a longer

eriod of time, for example the next five years, can be done to measure the acceptance of the standard. As the
ost popular websites undergo changes, specific considerations for the analysis and presentation of the results
ould be necessary. The results of any large-scale study about security.txt can be analyzed further by integrating

xternal data sources. For instance, the websites could be grouped by industries, sectors, countries, or other
actors to determine differences between those groups. Furthermore, instead of passively scanning the Internet,
t would be possible to use the contact information stated in the security.txt files to reach out to the security
eams. Such a study could clarify if the information is correct and if security teams respond to notifications in a
imely manner. 

We consider security.txt to be an excellent method for decentralized, automated, and simple security vulner-
bility disclosure. Therefore, we propose the following ideas to drive the adoption of this standard in the future.
ne possibility is to partner with browser vendors. Browsers could, for example, automatically check for and val-

date a website’s implementation of the standard. Building on top of that, the browser could use information from
ecurity.txt files to improve the already existing vulnerability reporting functionality built into the application. 

Other recommendations we derive focus on the organization’s side of the vulnerability disclosure process
hrough the use of security.txt files. The adoption is especially low for lower-ranked websites. This could be
aused by a lack of knowledge about the standard or a lack of operational skills and resources to implement and
aintain the standard. Therefore, seamless and near-automatic implementation of security.txt through content
anagement systems such as Drupal or Wordpress would be beneficial. Even though extensions for this purpose

lready exist, it would be preferable for these systems to offer the operator a native way to enable security.txt
hen deploying such systems. 
Digital Threats: Research and Practice, Vol. 4, No. 3, Article 36. Publication date: October 2023. 



36:16 • T. Hilbig et al. 

 

m  

m

7

F  

v  

c  

i
 

w  

t  

f  

p  

n  

i  

a
 

s

C

A

E

T  

S  

p  

v

D

T  

c

A

W

R
 

 

 

 

D

Automation is another important cornerstone for improving adoption. The development of tools for auto-
ated generation, deployment, and notification in case the file expires can lessen the burden associated with
aintaining a compliant security.txt file. 

 CONCLUSIONS 

or researchers, finding the correct contact information of an organization for disclosing information about
ulnerabilities is a difficult task. In this longitudinal study, we evaluated the adoption and correct usage of se-
urity.txt, a recently standardized method that aims to improve the disclosure process by publishing contact
nformation in a simple, standardized way. 

Our results show that the overall adoption rate of security.txt remains low, especially among lower-ranked
ebsites. However, we find a slight but steady increase in overall adoption throughout our longitudinal inves-

igation, especially after the standard became an RFC in April 2022. When it comes to conformity with the
ormatting and rules enforced by the standard, our work shows that a significant percentage of websites that de-
loy a security.txt file do not adhere to the RFC, including popular websites. Based on our results, we envision a
umber of directions for future work and propose ideas for improving the adoption of this standard. Such options

nclude automated generation and maintenance and the integration of security.txt into popular frameworks and
pplications. 

In conclusion, the increasing adoption of the security.txt standard is a promising step toward improving web
ecurity and facilitating communication between security researchers and website owners. 

OMPETING INTERESTS 

ll authors declare that they have no conflicts of interest. 

THICAL ASPECTS 

he design and execution of this study was cleared by the ethics board of HM Munich University of Applied
ciences. Since all data used in this study was collected from public sources, no potential tangible harm to any
erson’s well-being is to be expected. The data does not reveal private or confidential information about indi-
iduals. 

ATA AVAILABILITY 

he raw data gathered during scanning that support the findings of this study and the source code of the appli-
ation used for download, analysis, and presentation are available from the authors upon reasonable request. 

CKNO WLEDGMEN T 

e want to thank Farsight Security for the access to their passiveDNS database. 

EFERENCES 

[1] Tim Berners-Lee, Roy T. Fielding, and Larry Masinter. 2005. Uniform Resource Identifier (URI): Generic Syntax . STD 66. RFC Editor.

Retrieved from http://w w w.rfc-editor.org/rfc/rfc3986.txt . 

[2] Scott O. Bradner. 1996. The Internet Standards Process—Revision 3 . BCP 9. RFC Editor. Retrieved from http://w w w.rfc-editor.org/rfc/

rfc2026.txt 

[3] John Carroll and Casey Ellis. 2021. dnssecuritytxt: A standard allowing organizations to nominate security contact points and policies

via DNS TXT records. Retrieved from https://dnssecuritytxt.org/ 

[4] Catalin Cimpanu. 2017. Bleeping Computer: Security.txt Standard Proposed, Similar to Robots.txt. Retrieved from https://w w w.

bleepingcomputer.com/news/security/security- txt- standard- proposed- similar- to- robots- txt/ 

[5] Dave Crocker. 1997. Mailbox Names for Common Services, Roles and Functions . RFC 2142. RFC Editor. 
igital Threats: Research and Practice, Vol. 4, No. 3, Article 36. Publication date: October 2023. 

http://www.rfc-editor.org/rfc/rfc3986.txt
http://www.rfc-editor.org/rfc/rfc2026.txt
http://www.rfc-editor.org/rfc/rfc2026.txt
https://dnssecuritytxt.org/
https://www.bleepingcomputer.com/news/security/security-txt-standard-proposed-similar-to-robots-txt/
https://www.bleepingcomputer.com/news/security/security-txt-standard-proposed-similar-to-robots-txt/


security.txt Revisited: Analysis of Prevalence and Conformity in 2022 • 36:17 

 

 

 

 

[  

[

[

[

[

[  

 

[  

 

[

[

[  

[

[

[  

[  

 

[  

 

R

[6] W. Paul Findlay and Abdelrahman Abdou. 2022. Characterizing the adoption of security.txt files and their applications to vulnerability

notification. In Proceedings of the Workshop on Measurements, Attacks, and Defenses for the Web (MADWeb) . The Internet Society, United

States. https://doi.org/10.14722/madweb.2022.23014 

[7] FIRST. 2022. Incident Response Database. Retrieved from https://w w w.first.org/global/irt-database 

[8] Edwin Foudil and Yakov Shafranovich. 2020. A File Format to Aid in Security Vulnerability Disclosure . Internet-Draft draft-foudil-

securitytxt-10. Internet Engineering Task Force. Retrieved from https://datatracker.ietf.org/doc/draft- foudil- securitytxt/10/ . Work in

Progress. 

[9] Edwin Foudil and Yakov Shafranovich. 2022. A File Format to Aid in Security Vulnerability Disclosure . RFC 9116. RFC Editor. 

10] Edwin Foudil and Yakov Shafranovich. 2022. security.txt: A proposed standard which allows websites to define security policies. Re-

trieved from https://securitytxt.org/ 

11] GitHub. 2022. GitHub: SECURITY.md. Retrieved from https://github.com/github/.github/blob/master/SECURITY.md 

12] Adam Hupp. 2023. GitHub: python-magic. Retrieved from https://github.com/ahupp/python-magic 

13] IANA. 2022. security.txt Fields. Retrieved from https://w w w.iana.org/assignments/security- txt- fields/security- txt- fields.xhtml 

14] G. Klyne and C. Newman. 2002. Date and Time on the Internet: Timestamps . RFC 3339. RFC Editor. 

15] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Korczyński, and Wouter Joosen. 2019. Tranco: A research-

oriented top sites ranking hardened against manipulation. In Proceedings of the 26th Annual Network and Distributed System Security

Symposium (NDSS’19) . DOI: https://doi.org/10.14722/ndss.2019.23386 

16] Frank Li, Zakir Durumeric, Jakub Czyz, Mohammad Karami, Michael Bailey, Damon McCoy, Stefan Savage, and Vern Paxson. 2016.

You’ve got vulnerability: Exploring effective vulnerability notifications. In Proceedings of the 25th USENIX Conference on Security Sym-

posium (SEC’16) . USENIX Association, 1033–1050. 

17] Mark Nottingham. 2019. Well-Known Uniform Resource Identifiers (URIs) . RFC 8615. RFC Editor. 

18] Addison Phillips and Mark Davis. 2009. Tags for Identifying Languages . BCP 47. RFC Editor. 

19] Tara Poteat and Frank Li. 2021. Who you gonna call? an empirical evaluation of website security. txt deployment. In Proceedings of the

21st ACM Internet Measurement Conference . 526–532. 

20] Farsight Security. 2022. dnsdbflex—Github Website . Retrieved from https://github.com/farsightsec/dnsdbflex 

21] Farsight Security. 2022. Farsight Security DNSDB . Retrieved from https://w w w.farsightsecurity.com/solutions/dnsdb/ 

22] Ben Stock, Giancarlo Pellegrino, Frank H. Li, Michael Backes, and Christian Rossow. 2018. Didn’t you hear me?—Toward more suc-

cessful web vulnerability notifications. In Proceedings of the Network and Distributed System Security Symposium . 

23] Ben Stock, Giancarlo Pellegrino, Christian Rossow, Martin Johns, and Michael Backes. 2016. Hey, you have a problem: On the feasibility

of large-scaleweb vulnerability notification. In Proceedings of the 25th USENIX Conference on Security Symposium (SEC’16) . USENIX

Association, 1015–1032. 

24] The European Union. [n.d.]. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the Protection

of Natural Persons with Regard to the Processing of Personal Data and on the Free Movement of Such Data, and Repealing Directive

95/46/EC (General Data Protection Regulation). https://eur- lex.europa.eu/legal- content/EN/TXT/PDF/?uri=CELEX:32016R0679 
eceived 14 June 2023; accepted 26 June 2023 

Digital Threats: Research and Practice, Vol. 4, No. 3, Article 36. Publication date: October 2023. 

https://doi.org/10.14722/madweb.2022.23014
https://www.first.org/global/irt-database
https://datatracker.ietf.org/doc/draft-foudil-securitytxt/10/
https://securitytxt.org/
https://github.com/github/.github/blob/master/SECURITY.md
https://github.com/ahupp/python-magic
https://www.iana.org/assignments/security-txt-fields/security-txt-fields.xhtml
https://doi.org/10.14722/ndss.2019.23386
https://github.com/farsightsec/dnsdbflex
https://www.farsightsecurity.com/solutions/dnsdb/
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri$=$CELEX:32016R0679

	1 INTRODUCTION
	2 BACKGROUND
	2.1 RFC 2142 Emails
	2.2 SECURITY.md
	2.3 Contact Forms and Social Media
	2.4 dnssecuritytxt
	2.5 Centralized Methods
	2.6 Security.txt

	3 RELATED WORK
	4 METHODOLOGY
	4.1 Hardware and Infrastructure
	4.2 Timeline and Procedure
	4.3 File Locations
	4.4 User Agents and Opt-Out Process
	4.5 Definitions
	4.6 Downloader
	4.7 Filter
	4.8 Checker
	4.9 Analysis
	4.10 dnssecuritytxt

	5 RESULTS
	5.1 Access
	5.2 Deployment
	5.3 Content

	6 DISCUSSION
	6.1 Limitations
	6.2 Future Work

	7 CONCLUSIONS
	8 COMPETING INTERESTS
	9 ETHICAL ASPECTS
	10 DATA AVAILABILITY
	11 ACKNOWLEDGMENT
	REFERENCESendgraf 

