
Device Identity Bootstrapping
in Constrained Environments:

A BLE-based BRSKI Extension
1st Julian Krieger

Munich University of Applied Sciences
Munich, Germany

0009-0005-3000-0727

2nd Tobias Hilbig
Munich University of Applied Sciences

Munich, Germany
0000-0002-2904-4758

3rd Thomas Schreck
Munich University of Applied Sciences

Munich, Germany
0000-0002-8960-6986

Abstract—In contrast to user authentication in the digital
domain, device authentication entails distinct requirements and
challenges. In the enterprise context, Internet-of-Things (IoT)
devices must support strong identities to ensure secure and
trusted operations. A critical first step in developing such systems
is the secure bootstrapping of these devices. However, achieving
trusted bootstrapping is challenging when Internet access is
prohibited. In such environments, an identity must be provided
to the device beforehand. The solution should also work with
minimal human intervention in our scenario. To achieve this, we
developed cBRSKI-PRM, a hybrid combination of BRSKI-PRM
and cBRSKI. BRSKI-based communication between components
is facilitated via Bluetooth Low Energy. We implemented the
proposed solution on an ESP32 platform, ensuring reliable
performance in both hardware and software while optimizing
for low power consumption. Additionally, we identified and
addressed several issues in the specifications of the employed
protocols. We published all source code used in this project under
the permissive MIT license. By combining and extending existing
open protocols, we developed a highly assured bootstrapping
process for IoT devices under minimal trust assumptions in
constrained environments.

Index Terms—IoT, Bluetooth, bootstrapping, BRSKI, ESP32

I. INTRODUCTION

In enterprise environments, identity bootstrapping for con-
strained devices faces significant challenges due to the re-
source demands of existing solutions. Many current ap-
proaches rely on protocols and cryptographic operations that
exceed the capabilities of low-power devices. They also of-
ten require initial network connectivity, which is not always
desired in enterprise settings. The rapid rise of Internet-of-
Things (IoT) in these environments highlights the importance
of secure identity bootstrapping to protect systems against
unauthorized access. However, constrained devices with lim-
ited processing power, memory, and battery capacity cannot
effectively utilize existing bootstrapping methods.

This paper proposes a novel solution that addresses these
limitations by leveraging Bluetooth Low Energy (BLE) as
the sole communication protocol. By combining two boot-
strapping protocols, Bootstrapping Remote Secure Key Infras-
tructure with Pledge in Responder Mode (BRSKI-PRM) and
Constrained Bootstrapping Remote Secure Key Infrastructure

(cBRSKI), we develop a lightweight, scalable, and secure
identity bootstrapping system tailored to the specific needs
of enterprise IoT devices. The design, implementation, and
evaluation of this approach demonstrate its effectiveness in
advancing secure identity management for constrained devices
in enterprise settings.

The contributions of this work include: (1) a proposal for a
hybrid, BRSKI-PRM and cBRSKI based bootstrapping proto-
col over BLE, (2) the first official open-source implementation
of cBRSKI-PRM, including our proposed modifications, (3)
virtual and physical, ESP-32C3 and Android based, unit and
integration tests to evaluate the functional correctness of our
implementation.

This work is organized as follows: We begin by providing
background information in Section II and discussing require-
ments and related work in Section III. In Section IV, we
present our modifications to the protocol in detail. Information
about our proof-of-concept together with the evaluation is
given in Section V. We discuss our findings and provide di-
rections for future work in Section VI. Section VII concludes
this work.

II. BACKGROUND

IoT devices are characterized by limited power and process-
ing capabilities and require innovative approaches for secure
identity bootstrapping. The process involves the verification of
a device’s identity, followed by the issuance of key material
and the distribution of configuration data. Effective bootstrap-
ping schemes are essential for integrating these devices into
existing systems while ensuring robustness and scalability. The
security of this process plays an important role in enterprise
contexts. The bootstrapping process can also include the
tracking of devices by a registration service hosted in the
customer domain.

Ideally, vendors configure their devices with identification
information during the manufacturing process, for example, in
the form of an attestation key held in a secure enclave. Instead
of providing a single shared key, it is imperative to equip each
device with a unique identifier. Upon delivery, the customer
may read this information from the device, and match it to a



source of known devices provided by the device vendor. While
such information can be delivered to the customer alongside
the device shipment, a vendor may also host an externally
available service for automated verification processes. With
such a system, vendors can vouch for their devices during
the bootstrapping process. This allows customers to securely
integrate manufacturer-affirmed devices in their environments.

Some bootstrapping schemes choose X.509 end-entity cer-
tificates as the attestation mechanisms. Vendors can readily
provide the CA certificate that issued the device certificate,
enabling verification of the trust chain at the customer side.
Depending on the architecture, customers can supply devices
with a certificate and key material valid for their domain.
This information may be used to set up secure connections
after bootstrapping has succeeded. In our use-case, IoT devices
are intentionally prevented from accessing the local network
before they can successfully prove their identity. Therefore,
we want to make use of a proxy component, an additional
entity that acts as a service proxy between a device and the
customer’s registration authority. This service proxy facilitates
communication between devices and the customer domain’s
registration authority.

BLE [1] is a wireless communication protocol designed
for efficient, short-range data transmission. It is optimized for
quick and lightweight interactions without requiring pairing.
This makes it ideal for applications like real-time control
systems and smart infrastructure. Its low power consumption
and flexible communication make it suitable for a wide range
of devices, offering a cost-effective solution for scalable, high-
performance networks.

BLE uses the Generic Attribute Profile (GATT) [1, G]
protocol to organize information into a hierarchy of funda-
mental data units called attributes. Attributes include services
and characteristics and are distinguished by UUIDs. GATT
services are collections of related characteristics that define
specific functionalities and enable organized data exchange be-
tween devices [1, G-2.6.2]. GATT characteristics are individ-
ual data points within a GATT service that represent specific
values or attributes [1, G-2.6.4]. Operations encompass the
specific actions performed on a service’s characteristics [1, G-
3.3.1.1]. This includes reading values, writing new values, and
subscribing to notifications or indications of changes. While
similar protocols exist, GATT’s structured architecture comes
with the advantage of allowing a clear mapping to REST
operations.

III. REQUIREMENTS AND RELATED WORK

We begin by describing our requirements for the desired
solution to ensure a secure bootstrapping process for devices in
constrained environments. We then review existing protocols
to assess their capabilities.

A. Requirements

A bootstrapping protocol for IoT devices in constrained
enterprise environments must meet several critical require-
ments: Given that our primary application are low-powered,

constrained devices, the scheme must not exceed their limita-
tions. To accommodate varying numbers of devices, we need
to ensure scalability without compromising performance. The
scheme should require minimal outside intervention, simplify-
ing the user experience for service technicians and enhancing
efficiency. Most of the complexity should be hidden, with
the only necessary interaction being the verification of the
correct installation location. Devices should not require access
to the local network before completing bootstrapping, ensuring
customers do not need to trust unauthenticated devices on
first use. To reduce network load, passive devices should
remain dormant until they receive an impulse to initiate the
bootstrapping process.

Utilizing open-source hardware and software is preferable
to foster innovation and community engagement. Adhering
to established enterprise standards can facilitate integration
with existing infrastructure, allowing for a smoother transition
for enterprises. Strong security measures must be embedded
to protect sensitive data and prevent unauthorized access.
Therefore, we require the usage of attestation keys unique
to each device, rather than identical pre-shared keys. Finally,
vendors should cooperate in the identity-proofing process, for
example by providing openly accessible interfaces for device
identity verification.

In accordance with these requirements, we reviewed the
literature for standardized bootstrapping schemes suitable for
IoT devices: We first considered Automatic Certificate Man-
agement Environment (ACME) [2] to handle the provisioning
of device certificates. Through the ACME protocol, clients
can request and retrieve certificates from a central service
in an automated fashion. Initially, clients must establish a
DHCP connection and employ a discovery scheme like DNS
Service Discovery (DNS-SD) [3]. Both steps require an initial
network connection that does not exist in our scenario. For
these reasons, we did not consider ACME any further.

Another protocol, called Enrollment over Secure Transport
(EST) [4], seemed to better fit our requirements. However,
EST is designed for devices which can establish a secure
transport channel via HTTP over TLS. It does not specify how
this connection is intended to be initially established or how
key material is to be distributed to enrollment candidates. This
makes the protocol unsuitable for scenarios in which vendor-
installed pre-shared key material or the manual installation of
secret keys is not desired or possible.

Finally, Bootstrapping Remote Secure Key Infrastructure
(BRSKI) [5] offers automated trust establishment for devices
and scalability for large-scale device deployments. BRSKI
builds upon and extends the functionalities provided by EST
and provides further functionality to establish an initial con-
nection to the local registration authority. In addition to the
target device, called Pledge, BRSKI defines a Manufacturer
Authorized Signing Authority (MASA) component operated by
the device vendor. It further specifies a customer-operated
Domain Registrar, which handles communication between the
onboarding candidate and its vendor. In enterprise environ-
ments, minimizing the local network connectivity of foreign,



Pledge Registrar-Agent

Advertise

Scan

Determine Serialization Format

Push CSR Attributes

Identify

Imprint on Domain Registrar

Enroll

Response

Query Pledge Capabilities

A

B C

D

E

F

Request Join

1

2

3

4

5

Figure 1. Protocol sequence diagram. Steps (1) – (5) are our modifications,
while steps [A] – [F] show the usual BRSKI-PRM procedure. The interactions
with the MASA and Domain Registrar in steps [D] – [F] are not depicted [7].

untrusted devices is often desirable. Therefore, BRSKI only
requires that newfound Pledges establish a direct connection to
a so-called Join Proxy, which acts as an intermediary between
the Pledge and the Domain Registrar [5, 2.5.1-2].

Communication in BRSKI is based on public key infrastruc-
ture and is implemented as the exchange of signed payloads
carrying device- or service-owned certificates. The device-
owned certificate is installed by the vendor during manufac-
turing. Initially, mutual authentication between new devices
and a customer’s network is achieved through a vendor-issued,
signed artifact called voucher [6]. This voucher is used to
securely deliver a root CA certificate onto the Pledge for
verification of the registrar’s identity [5, 2.5.5]. After the trust
anchor is installed onto the device, BRSKI continues with the
enrollment as defined in EST. By providing an automated
preliminary phase for the authorization of customer domain
CA certificates, BRSKI eliminates the need for the manual
interaction defined by EST [5, 1.1]. Therefore, BRSKI meets
our requirements, as it offers a mutual verification process that
provides the security guarantees we require.

IV. PROPOSED PROTOCOL EXTENSION

This section outlines the practical aspects of the proposed
scheme. We first discuss our modifications of BRSKI-PRM
and cBRSKI that enable transport over BLE. In Figure 1,
all steps of the final scheme are depicted, with detailed
explanations given throughout this section. We then highlight
the shortcomings of the current library ecosystem and present
our contributions to addressing them.

A. BRSKI with Pledge in Responder Mode

BRSKI-PRM [7] enhances BRSKI with a pledge-passive
mode, wherein devices wait for an initial trigger to start the on-
boarding process. It introduces a Registrar-Agent component,

Vendor Services

Manufacturer
Authorized
Signing
Authority

Ownership 
Tracker

Domain 
Registrar

Key Infrastructure
(e.g., PKI CA)

Pledge

Drop Ship

Registrar-Agent

Customer Domain

BRSKI-
MASA

Figure 2. Architecture of BRSKI-PRM with abstract components [7].

which may replace, or make use of, the Join-Proxy defined
in BRSKI. Its architecture with all individual components
is depicted in Figure 2. By using the Registrar-Agent in
the form of a manually operated, out-of-band commissioning
tool, Pledges may be enrolled into a network without the
need for a co-located intermediary device [7, 5.2]. Once an
impulse is sent, both the Pledge and the Registrar-Agent
generate, sign, and swap initial artifacts. To prevent replay
attacks, these include the Pledge’s serial number and a nonce
or a timestamp. While the standard describes a HTTP(S)
connection between Registrar-Agent and Pledge, it is not
limited to IP-based protocols [7]. By utilizing a BLE or Near
Field Communication (NFC) connection, one could entirely
eliminate the need for untrusted bootstrapping candidates to
enter a network before and during the bootstrapping process.
However, the specification does not provide details on non-IP-
based implementations. To fulfill our requirement of enrolling
devices without initial network connectivity, we enable both
the Pledge and the Registrar-Agent to exchange data via
the BLE protocol. Furthermore, we adapt BRSKI-PRM with
techniques better suited for embedded hardware and its unique
constraints.

B. Payload Compression

Constrained devices with limited computation resources
benefit from minimal transfer sizes and serialization formats
with a focus on a small memory footprint. They often do
not exchange data in the format of HTTP messages, but
instead rely on transport protocols that use bespoke binary
message formats. The size of traditional BRSKI data packets
is often inflated by multiple, possibly large certificate chains.
Accodring to the BRSKI specification [5, 5], these and other
binary data must be encoded in Base64 [8]. Base64 is a
binary-to-text encoding scheme, representing every three bytes
of binary data as four bytes of ASCII text, resulting in an
overhead of approximately 33%.

Choosing a serialization format better suited for constrained
IoT devices could minimize the payload size. Therefore, we



loop

Pledge Registrar-Agent

ADVERTISE: all services

SUBSCRIBE

WRITE WITH ACKNOWLEDGEMENT

ACK

SUBSCRIPTION EVENT

loop
READ

READ RESULT

WRITE WITH ACK

UNSUBSCRIBE

1

2

3

4

5

6

7

8

9

Figure 3. Sequence diagram for GATT service access. BLE-based interactions
between the Pledge and the Registrar-Agent component operates as depicted.

chose to look into cBRSKI [9], which utilizes Concise Binary
Object Representation (CBOR) [10] as a message encoding
format. In CBOR, binary data does not need to be converted
to and from Base64 encoding, as they are directly transmitted
in their original representation. BRSKI and BRSKI-PRM make
use of JSON Web Signature (JWS) tokens as a signature
framework for their JSON payloads. Alternatively, cBRSKI
makes use of CBOR Object Signing and Encryption (COSE)
[11], a protocol for the exchange of signed CBOR payloads.
While cBRSKI is a BRSKI extension with a direct focus
on hardware constrained devices, it comes with a decisive
disadvantage. Similar to BRSKI, Pledges in cBRSKI need
to be directly connected to the local network in order to
communicate with the registrar. cBRSKI also does not specify
bootstrapping for Pledges for which the onboarding proxy
handles transport via a non-IP-based transport protocol. Our
proposed solution is thus a fusion of a BLE-modified BRSKI-
PRM protocol and features from cBRSKI to limit data transfer
sizes. This hybrid protocol works as a pledge-passive one-
touch bootstrapping scheme for constrained devices.

C. Multi Signature Tokens

The use of JWS and COSE as signature and encoding
protocols poses some problems. BRSKI and its extensions
make use of multi-signed tokens. When transmitting data
between the device and the manufacturer, the customer’s
Domain Registrar may add its signature in-flight. At the time
of writing, we were unable to find third-party libraries that
correctly implemented the handling of such multi-signature
tokens. To circumvent this issue, we considered the signed
payloads to be nested instead. After consultation with the
committee in charge of developing BRSKI-PRM, this idea
was rejected, as the challenges we faced in our ecosystem do

not warrant a deviation from the standard. Thus, in order to
be compliant with BRSKI-PRM’s specification, we developed
our own implementation for multi-signature COSE tokens by
extending coset [12], a COSE library by Google.

D. Bluetooth Extension for BRSKI-PRM

BRSKI and its extensions rely on IP-based transport pro-
tocols, making use of the REST paradigm for data exchange.
In our implementation, the Registrar-Agent is a BLE client
device, with the Pledge acting as a GATT central server, see
steps (1) and (2) in Figure 1. Similar to an HTTP route, each
communication endpoint in the BRSKI-PRM specification
is mapped to a single BLE service identified by a UUID.
Figure 3 depicts how both entities communicate. The process
itself is the same for all operations. In the following, we
explain the steps in detail: After the Pledge is powered on,
(1) it advertises all services by their UUIDs. Each mapped
service consists of a pair of characteristics for writing and
reading data. Instead of sending a request, the Registrar-Agent
subscribes to a writing-enabled characteristic (2) and writes
chunked data (3), receiving confirmation for every write (4).
A subscription event (5) is sent after all data was received,
deserialized, and processed by the Pledge. After finishing its
computation, it serializes the response data and writes them
onto the characteristic designed for reading data. The Pledge
reads the chunked response (6), receives the result (7) and
confirms the successful retrieval (8). Finally, it unsubscribes
from the characteristic (9).

E. Device Capability Advertisement

Depending on the context, payloads in BRSKI-PRM are of
different types. In order to verify that a request is answered
by data of the correct format, clients and servers must be able
to communicate the intended content type. This is solved in
BRSKI and its extensions via request-integrated HTTP content
type negotiation strategies [13]. However, when using BLE
as the transport protocol, no native functionality is available
for this method. Therefore, we have extended our protocol
with a content negotiation strategy, see step (3) in Figure 1.
To save on transfer size, it is executed before the actual
bootstrapping process takes place. To communicate intent, the
Pledge advertises its capabilities as a set of BLE characteris-
tics. First, the Pledge communicates the serialization format
it wishes to use for communication with the Registrar-Agent.
The format is transmitted via plain UTF-8-encoded text and is
a choice between JSON and CBOR for our use-case. With the
interchange format set, the Registrar-Agent can now request
additional capabilities from the device, see step (4) in Figure 1.
This information bundle specifies supported types of both
unsigned and signed tokens. It also includes the requested
serialization format of the BRSKI voucher object and a list
of supported encryption and signing algorithms. Using this
protocol, the Registrar-Agent can seamlessly support devices
with differing capabilities. Devices in turn can exactly specify
their supported feature-set that best fits their hardware poten-



tial. Finally, the Registrar-Agent pushes the certificate signing
request attributes to the Pledge, see step (5) in Figure 1.

V. PROOF OF CONCEPT AND EVALUATION

We describe how we implemented and evaluated the pro-
posed scheme in the following sections.

A. SoC and Software

We chose Espressif’s ESP32-C3 as a development board for
our project. Espressif provides a fully-featured software devel-
opment kit and comprehensive documentation for their boards.
One of the use-cases we envision involves access control
features that require maximum dependability. Therefore we
chose to make use of the Rust programming language for the
implementation of the embedded firmware and other software
components. Leveraging the programming language’s inherent
memory safety, performance, and focus on correctness, we aim
to increase the solution’s dependability by preventing criti-
cal memory handling-related vulnerabilities at the language
level. Using official Rust abstractions for the ESP32, we can
utilize Espressif’s software while also harnessing the power
of a safe-by-default ecosystem. However, using Rust is not
entirely without disadvantages. Compared to C, Rust’s third-
party software ecosystem is still relatively immature, leading
to challenges of varying severity, which we discuss in the
following sections. We contributed all developed solutions to
the open source community.

We intend to use the device’s Bluetooth antenna as a beacon
for indoor navigation in future use-cases. Therefore, we need
to use both the ESP32’s WiFi and Bluetooth chipset in tandem
for IoT-devices that connect wirelessly. In the majority of ESP
boards, Bluetooth and WiFi functionalities use a single 2.4
GHz module. Writing application code correctly for using
both in tandem is complex and possibly error-prone. Not
handling the simultaneous use correctly may lead to starvation
of either functionality or to system instability [14]. RF coexis-
tence is further complicated when relying on Bluetooth Mesh
functionality, which we intend to use for indoor navigation.
To solve this issue, we use Rust’s asynchronous capabilities
for embedded hardware [15]. This allows us to implement
our firmware as a non-blocking, event-based state machine.
Using this technique, we receive the benefit of near-instant
switching between both components. We can further guarantee
that each component is correctly setup or torn down before
and after use. The microchip can efficiently shift between
computing intensive workloads by switching contexts without
blocking the computation of a parallel thread. Furthermore,
we can query the ESP32’s Real Time Operating System for
a status report of available computing resources. In case of
resource exhaustion, we can effortlessly block computation
on the current thread and periodically check for resources to
become available.

Another drawback of Rust is a lack of mature TLS li-
braries for embedded architectures. While Espressif provided
OpenSSL bindings in past versions of their development kit
[16], the ecosystem now relies on WolfSSL or MbedTLS

for SSL connectivity [17]. While Rust bindings were in
development for both solutions at the time of writing, we
have found them to be not yet ready for production use. To
integrate TLS and signing functionality more tightly into our
needs for safety in critical systems, we relied instead on the
Ring [18] library. Ring is a Rust-based implementation of
Google’s BoringSSL [19], which itself is a fork of OpenSSL.
It provides us with the security primitives needed to verify
X.509 certificates and to sign COSE payloads in accordance
to BRSKI-PRM’s specification. Finally, we added upstream
support to compile Ring on ESP32 architectures [20].

B. Wireless Communication

The ESP32-C3 supports two means of communication with
clients. IP-based protocols can be employed using its wireless
antenna and network stack. The SoC is also equipped with
a Bluetooth chipset for serial communication via Bluetooth
Classic or BLE. By choosing BLE, we gain the advantage of
minimizing pollution in the 2.4 GHz spectrum with numerous
pairable devices, as we only require short-range communica-
tion. With future battery-powered devices in mind, we can also
benefit from drastically lower power consumption. We chose
the NimBLE Bluetooth implementation due to its minimal
memory footprint and low power usage.

Even with minimal CBOR-based payloads, BRSKI based
payloads are slightly larger than intended for BLE communi-
cation. This is mostly due to the inclusion of trust chains in the
form of DER-encoded certificates [21], [22]. The required size
for our own extensions to control messages, e.g., content type
negotiation, is not pivotal here. To handle transactions larger
than the minimum MTU of 23 bytes [1, A-4.22], the BLE
specification includes long read and long write operations.
However, the size of transmitted data within a single operation
is still limited by the largest possible attribute size of 512
bytes [1, F-3.2.9]. Although we exceed this limit, we do not
consider the resulting challenge sufficiently critical to justify
using another protocol.

We therefore implemented support for long reads and writes
directly at the application level. Our solution is heavily in-
spired by Silicon Labs [23] and employs a fragmentation
algorithm for the exchange of payload fragments. First, we
instruct the BLE peripheral to negotiate the maximum possible
MTU size. We split the data into fragments that fit with the
maximum possible MTU length, while also including padding
for header information overhead. By using the Write with
Acknowledgment operation, we are able to verify a successful
transfer of each chunk.

C. Evaluation

To evaluate the proposed solution, we created two im-
plementations. First, we set up all required components in
a virtual environment, including both Registrar-Agent and
Pledge simulated as web servers. This allowed us to trace
each individual step of the protocol to confirm its correctness.
Unit tests allowed us to ensure the functional correctness
of the BRSKI-PRM related parts of our implementation. In



addition, we conducted integration tests to verify that the
Domain Registrar and MASA correctly handle malformed
payloads and errors. Then, we converted most of the simulated
Pledge logic to code running on the ESP32-C3 platform and
began testing the physical components for functionality and
correctness.

Instead of building a complex public key infrastructure
with the sole purpose of testing our prototype, we generated
test certificates for all entities with the openSSL utility. Their
structure matched the examples in BRSKI [5, 7.1]. In addition,
we prepared a wireless network with a pre-generated, matching
X.509 certificate for testing. Connecting a serial flash tool
[24] to the ESP32-C3 enables debugging capabilities and
allows streaming device logs to the host computer. After
powering up the SoC, we scanned for BLE devices using the
Android-based Registrar-Agent. We were able to confirm the
detection of a device advertising the serial number included
in the flashed firmware. Instructing the Registrar-Agent to
establish a connection allowed us to verify that the BLE device
successfully promoted all required services.

To gain insight into the Registrar-Agent’s function, we
instructed it to send the logging output to a central logging
collection service. Additionally, we have deployed both the
MASA and the Domain Registrar services to be reachable in
the local network to which the Registrar-Agent is also con-
nected. Upon starting the bootstrapping process, we matched
the embedded device logs to similar output we gathered when
testing the simulated device. After swapping the required arti-
facts, the Pledge successfully generates both a voucher request
and an enrollment request containing a Certificate Signing
Request (CSR) and transmits both to the Registrar-Agent. This
voucher request is forwarded to the Domain Registrar, which
then wraps the voucher request with identifying information
and forwards it to the MASA.

The MASA verifies the payload’s correctness and then is-
sues and responds with a voucher artifact. Next, the Registrar-
Agent forwards the CSR to the Domain Registrar, which
in turn issues and responds with the pre-generated network
certificate. The voucher, the CA certificate bundle as well as
the issued credentials are sent to the Pledge by the Registrar-
Agent. Next, the Pledge returns a status report, confirming
the successful verification of the domain trust anchor and
voucher artifact. By observing the logging output, we con-
firmed that the device certificate and the domain trust anchor
were successfully installed on the device in its native trust
store. Furthermore, after completing the bootstrapping process,
we observed that the device successfully connects to the testing
network using the supplied device certificate.

VI. DISCUSSION AND FUTURE WORK

In this paper, we have proposed a hybrid bootstrapping
scheme tailored to constrained devices in enterprise environ-
ments. We first identified requirements and challenges for
bootstrapping these devices in our target environment. Our
literature review resulted in a number of candidate protocols,
none of them viable in our use-case. The modularity of BRSKI

and its extensions allowed us to compose a suitable solution,
making it a good fit for bootstrapping approaches tailored to
unique needs that arise in enterprise environments. In this
work, we chose BLE as a replacement for the default IP-
based networking stack. Additionally, we solved the challenges
posed by our choice of transport protocol, demonstrating the
use of BRSKI on resource-constrained devices. Our work
demonstrates that BRSKI is a promising candidate for securing
the onboarding process in enterprise environments. By imple-
menting our hybrid approach on real hardware, we demon-
strate that the proposed scheme is compatible with low-cost
integrated chips. The BLE-based message exchange protocol
was successfully tested with an Android phone acting as the
Registrar-Agent and a ESP32-C3 device as the Pledge. The
Rust-based implementation allowed us to successfully realize
the protocol on hardware-constrained IoT devices, ensuring
correctness, dependability, and security of the solution.

Future research can focus on further optimizing BLE data
transfer and exploring new extensions to enhance the scal-
ability and security of the proposed scheme in real-world
deployments. Additionally, this work does neither include a
re-enrollment nor certificate revocation scheme, which could
be explored in forthcoming work. Despite promising results
such as a quantifiable reduction of payload sizes, effective data
transfer protocols for BLE with payloads exceeding the max-
imum GATT characteristic size require further investigation.
Exploring existing, but currently unsupported BLE protocols
within the ESP32 ecosystem for large data transfer could offer
further improvements to our solution.

VII. CONCLUSION

We presented a hybrid bootstrapping scheme designed
specifically for IoT devices in constrained enterprise en-
vironments. Through the combination of BRSKI-PRM and
cBRSKI, and by leveraging BLE, we developed a secure and
efficient solution that addresses the challenges of intermittent
connectivity, scalability, and resource limitations in enterprise
IoT systems. Furthermore, we were able to provide insights
and improvements to the BRSKI-PRM committee during this
project. We also contributed to the broader ecosystem by
providing the first official open-source example implemen-
tation for BRSKI-PRM [25]. Our work on secure firmware
for the ESP32 includes improvements to the official Espressif
Rust SDK’s and their Rust-based BLE stack. Finally, we
supported maintainers with multiple bug fixes related to the
flash algorithm verification and debugging capabilities. This
work is a step towards a future in which strong identity
bootstrapping processes become the norm in enterprise IoT
environments.

COMPETING INTERESTS

All authors declare that they have no conflicts of interest.

ACKNOWLEDGMENT

We would like to thank Steffen Fries and Thomas Werner
at Siemens for their support and valuable insight.



REFERENCES

[1] Bluetooth SIG, Inc, “Bluetooth Core Specification Version 6.0 Vol.
3,” Bluetooth Special Interest Group, Tech. Rep. [Online]. Available:
https://www.bluetooth.com/specifications/bluetooth-core-specification/

[2] R. Barnes, J. Hoffman-Andrews, D. McCarney, and J. Kasten,
“Automatic certificate management environment (ACME).” [Online].
Available: https://www.rfc-editor.org/info/rfc8555

[3] S. Cheshire and M. Krochmal, “DNS-Based Service Discovery,” RFC
6763. [Online]. Available: https://www.rfc-editor.org/info/rfc6763

[4] M. Pritikin, P. E. Yee, and D. Harkins, “Enrollment over secure
transport.” [Online]. Available: https://www.rfc-editor.org/info/rfc7030

[5] M. Pritikin, M. Richardson, T. Eckert, M. H. Behringer, and K. Watsen,
“Bootstrapping remote secure key infrastructure (BRSKI).” [Online].
Available: https://www.rfc-editor.org/info/rfc8995

[6] K. Watsen, M. Richardson, M. Pritikin, and T. Eckert, “A Voucher
Artifact for Bootstrapping Protocols,” RFC 8366. [Online]. Available:
https://www.rfc-editor.org/info/rfc8366

[7] S. Fries, T. Werner, E. Lear, and M. Richardson, “BRSKI with
pledge in responder mode (BRSKI-PRM).” [Online]. Available:
https://datatracker.ietf.org/doc/draft-ietf-anima-brski-prm/16/

[8] S. Josefsson, “The Base16, Base32, and Base64 Data Encodings,” RFC
4648. [Online]. Available: https://www.rfc-editor.org/info/rfc4648

[9] M. Richardson, P. V. der Stok, P. Kampanakis, and E. Dijk,
“Constrained bootstrapping remote secure key infrastructure
(cBRSKI).” [Online]. Available: https://datatracker.ietf.org/doc/
draft-ietf-anima-constrained-voucher/26/

[10] C. Bormann and P. E. Hoffman, “Concise binary object representation
(CBOR).” [Online]. Available: https://www.rfc-editor.org/info/rfc8949

[11] J. Schaad, “CBOR Object Signing and Encryption (COSE),” RFC 8152,
Jul. 2017. [Online]. Available: https://www.rfc-editor.org/info/rfc8152

[12] D. Drysdale and P. Crowley, “google/coset: A set of rust types for
supporting COSE.” [Online]. Available: https://github.com/google/coset

[13] R. T. Fielding, M. Nottingham, and J. Reschke, “HTTP Semantics,”
RFC 9110. [Online]. Available: https://www.rfc-editor.org/info/rfc9110

[14] Espressif Systems, “RF coexistence - ESP32-c3 – ESP-
IDF programming guide v5.3.1 documentation.” [Online].
Available: https://docs.espressif.com/projects/esp-idf/en/stable/esp32c3/
api-guides/coexist.html

[15] C. Lerche, T. d. Zeeuw, and tokio-rs. mio. [Online]. Available:
https://lib.rs/crates/mio

[16] Espressif Systems, “ESP-IDF release v5.0 is a major update |
espressif systems.” [Online]. Available: https://www.espressif.com/en/
news/ESP-IDFv5

[17] ——, “ESP-TLS - ESP32 – ESP-IDF programming guide v5.3.1
documentation.” [Online]. Available: https://docs.espressif.com/projects/
esp-idf/en/v5.3.1/esp32/api-reference/protocols/esp tls.html

[18] B. Smith. briansmith/ring: Safe, fast, small crypto using rust. [Online].
Available: https://github.com/briansmith/ring

[19] Google LLC. boringssl - git at google. [Online]. Available: https:
//boringssl.googlesource.com/boringssl

[20] J. Krieger, B. Smith, and L. Pirchio. Adding XTENSA architecture
as a ring target · issue #2088 · briansmith/ring. [Online]. Available:
https://github.com/briansmith/ring/issues/2088

[21] S. Boeyen, S. Santesson, T. Polk, R. Housley, S. Farrell, and D. Cooper,
“Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile,” RFC 5280. [Online]. Available:
https://www.rfc-editor.org/info/rfc5280

[22] C. Gardiner and C. Wallace, “ASN.1 Translation,” RFC 6025. [Online].
Available: https://www.rfc-editor.org/info/rfc6025

[23] S. Labs, “Working with long characteristic values.” [Online]. Available:
https://github.com/SiliconLabs/bluetooth stack features/blob/master/
gatt protocol/working with long characteristic values/readme.md

[24] probe-rs Contributors, “probe-rs/probe-rs: A debugging toolset and
library for debugging embedded ARM and RISC-V targets on a
separate host.” [Online]. Available: https://github.com/probe-rs/probe-rs

[25] J. Krieger, “hm-seclab/open-brski: cBRSKI-PRM Example Implemen-
tation.” [Online]. Available: https://github.com/hm-seclab/open-brski

https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://www.rfc-editor.org/info/rfc8555
https://www.rfc-editor.org/info/rfc6763
https://www.rfc-editor.org/info/rfc7030
https://www.rfc-editor.org/info/rfc8995
https://www.rfc-editor.org/info/rfc8366
https://datatracker.ietf.org/doc/draft-ietf-anima-brski-prm/16/
https://www.rfc-editor.org/info/rfc4648
https://datatracker.ietf.org/doc/draft-ietf-anima-constrained-voucher/26/
https://datatracker.ietf.org/doc/draft-ietf-anima-constrained-voucher/26/
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8152
https://github.com/google/coset
https://www.rfc-editor.org/info/rfc9110
https://docs.espressif.com/projects/esp-idf/en/stable/esp32c3/api-guides/coexist.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32c3/api-guides/coexist.html
https://lib.rs/crates/mio
https://www.espressif.com/en/news/ESP-IDFv5
https://www.espressif.com/en/news/ESP-IDFv5
https://docs.espressif.com/projects/esp-idf/en/v5.3.1/esp32/api-reference/protocols/esp_tls.html
https://docs.espressif.com/projects/esp-idf/en/v5.3.1/esp32/api-reference/protocols/esp_tls.html
https://github.com/briansmith/ring
https://boringssl.googlesource.com/boringssl
https://boringssl.googlesource.com/boringssl
https://github.com/briansmith/ring/issues/2088
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc6025
https://github.com/SiliconLabs/bluetooth_stack_features/blob/master/gatt_protocol/working_with_long_characteristic_values/readme.md
https://github.com/SiliconLabs/bluetooth_stack_features/blob/master/gatt_protocol/working_with_long_characteristic_values/readme.md
https://github.com/probe-rs/probe-rs
https://github.com/hm-seclab/open-brski

	Introduction
	Background
	Requirements and Related Work
	Requirements

	Proposed Protocol Extension
	BRSKI with Pledge in Responder Mode
	Payload Compression
	Multi Signature Tokens
	Bluetooth Extension for BRSKI-PRM
	Device Capability Advertisement

	Proof of Concept and Evaluation
	SoC and Software
	Wireless Communication
	Evaluation

	Discussion and Future Work
	Conclusion
	References

